Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R763-R775, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189990

RESUMO

Migration of monocytes-macrophages plays an important role in phagocytosis of pathogens and cellular debris in a variety of pathophysiological conditions. Although epithelial Na+ channels (ENaCs) are required for normal migratory responses in other cell types, their role in macrophage migration signaling is unknown. To address this possibility, we determined whether ENaC message is present in several peripheral blood monocyte cell populations and tissue-resident macrophages in healthy humans using the Human Protein Atlas database (www.proteinatlas.org) and the mouse monocyte cell line RAW 264.7 using RT-PCR. We then determined that selective ENaC inhibition with amiloride inhibited chemotactic migration (∼50%), but not phagocytosis, of the mouse monocyte-macrophage cell line RAW 264.7. Furthermore, we generated a cell line stably expressing an NH2-terminal truncated αENaC to interrupt normal channel trafficking and found it suppressed migration. Prolonged exposure (48 h) of RAW 264.7 cells to proinflammatory cytokines interferon γ (IFNγ) and/or tumor necrosis factor α (TNFα) inhibited RAW 264.7 migration and abolished the amiloride (1 µM)-sensitive component of migration, a finding consistent with ENaC downregulation. To determine if proinflammatory cytokines regulate αENaC protein expression, cells were exposed to proinflammatory cytokines IFNγ (10 ng/mL, last 48 h) and TNFα (10 ng/mL, last 24 h). By Western blot analysis, we found whole cell αENaC protein is reduced ≥50%. Immunofluorescence demonstrated heterogeneous αENaC inhibition. Finally, we found that overnight exposure to amiloride stimulated morphological changes and increased polarization marker expression. Our findings suggest that ENaC may be a critical molecule in macrophage migration and polarization.


Assuntos
Canais Epiteliais de Sódio , Fator de Necrose Tumoral alfa , Camundongos , Animais , Humanos , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Amilorida/farmacologia , Interferon gama/farmacologia , Interferon gama/metabolismo , Citocinas/metabolismo , Macrófagos/metabolismo
2.
J Am Soc Mass Spectrom ; 31(2): 308-318, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32031389

RESUMO

Addition of trivalent chromium, Cr(III), to solutions undergoing electrospray ionization (ESI) enhances protonation and leads to formation of [M + 2H]2+ for peptides that normally produce [M + H]+. This effect is explored using electronic structure calculations at the density functional theory (DFT) level to predict the energetics of various species that are potentially important to the mechanism. Gas- and solution-phase reaction free energies for glycine and its anion reacting with [Cr(III)(H2O)6]3+ and for dehydration of these species have been predicted, where glycine is used as a simple model for a peptide. For comparison, calculations were also performed with Fe(III), Al(III), Sc(III), Y(III), and La(III). Removal of water from these complexes, as would occur during the ESI desolvation process, results in species that are highly acidic. The calculated pKa of Cr(III) with a single solvation shell is -10.8, making [Cr(III)(H2O)6]3+ a superacid that is more acidic than sulfuric acid (pKa = -8.8). Binding to glycine requires removal of two aqua ligands, which gives [Cr(III)(H2O)4]3+ that has an extremely acidic pKa of -28.8. Removal of additional water further enhances acidity, reaching a pKa of -84.7 for [Cr(III)(H2O)]3+. A mechanism for enhanced protonation is proposed that incorporates computational and experiment results, as well as information on the known chemistry of Cr(III), which is substitutionally inert. The initial step involves binding of [Cr(III)(H2O)4]3+ to the deprotonated C-terminus of a peptide. As the drying process during ESI strips water from the complex, the resulting superacid transfers protons to the bound peptide, eventually leading to formation of [M + 2H]2+.


Assuntos
Ácidos/química , Cromo/química , Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Ácidos/metabolismo , Cromo/metabolismo , Glicina/química , Glicina/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Peptídeos/metabolismo , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...