Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 28(Pt 4): 1166-1173, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34212880

RESUMO

The human cell nucleus serves as an important organelle holding the genetic blueprint for life. In this work, X-ray ptychography was applied to assess the masses of human cell nuclei using its unique phase shift information. Measurements were carried out at the I13-1 beamline at the Diamond Light Source that has extremely large transverse coherence properties. The ptychographic diffractive imaging approach allowed imaging of large structures that gave quantitative measurements of the phase shift in 2D projections. In this paper a modified ptychography algorithm that improves the quality of the reconstruction for weak scattering samples is presented. The application of this approach to calculate the mass of several human nuclei is also demonstrated.


Assuntos
Núcleo Celular/ultraestrutura , Microscopia de Contraste de Fase/métodos , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Síncrotrons , Difração de Raios X , Raios X
2.
J Synchrotron Radiat ; 27(Pt 6): 1688-1695, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33147195

RESUMO

Ptychography is a scanning coherent diffraction imaging technique which provides high resolution imaging and complete spatial information of the complex electric field probe and sample transmission function. Its ability to accurately determine the illumination probe has led to its use at modern synchrotrons and free-electron lasers as a wavefront-sensing technique for optics alignment, monitoring and correction. Recent developments in the ptychography reconstruction process now incorporate a modal decomposition of the illuminating probe and relax the restriction of using sources with high spatial coherence. In this article a practical implementation of hard X-ray ptychography from a partially coherent X-ray source with a large number of modes is demonstrated experimentally. A strongly diffracting Siemens star test sample is imaged using the focused beam produced by either a Fresnel zone plate or beryllium compound refractive lens. The recovered probe from each optic is back propagated in order to plot the beam caustic and determine the precise focal size and position. The power distribution of the reconstructed probe modes also allows the quantification of the beams coherence and is compared with the values predicted by a Gaussian-Schell model and the optics exit intensity.

3.
Chem Commun (Camb) ; 55(13): 1931-1934, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30681079

RESUMO

The surface of many Old Master paintings has been affected by the appearance of whitish lead-rich deposits, which are often difficult to fully characterise, thereby hindering conservation. A paint micro-sample from Rembrandt's Homer was imaged using X-ray Diffraction Computed Tomography (XRD-CT) in order to understand the evolving solid-state Pb chemistry from the painting surface and beneath. The surface crust was identified as a complex mixture of lead sulfates. From the S : Pb ratios throughout the paint layer, we can conclude that S is from an external source in the form of SO2, and that the nature of Pb-SO4 product is dependent on the degree of diffusion/absorption of SO2 into the paint layers.

4.
Sci Adv ; 3(3): e1602838, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28345057

RESUMO

Although we often understand empirically what constitutes an active catalyst, there is still much to be understood fundamentally about how catalytic performance is influenced by formulation. Catalysts are often designed to have a microstructure and nanostructure that can influence performance but that is rarely considered when correlating structure with function. Fischer-Tropsch synthesis (FTS) is a well-known and potentially sustainable technology for converting synthetic natural gas ("syngas": CO + H2) into functional hydrocarbons, such as sulfur- and aromatic-free fuel and high-value wax products. FTS catalysts typically contain Co or Fe nanoparticles, which are often optimized in terms of size/composition for a particular catalytic performance. We use a novel, "multimodal" tomographic approach to studying active Co-based catalysts under operando conditions, revealing how a simple parameter, such as the order of addition of metal precursors and promoters, affects the spatial distribution of the elements as well as their physicochemical properties, that is, crystalline phase and crystallite size during catalyst activation and operation. We show in particular how the order of addition affects the crystallinity of the TiO2 anatase phase, which in turn leads to the formation of highly intergrown cubic close-packed/hexagonal close-packed Co nanoparticles that are very reactive, exhibiting high CO conversion. This work highlights the importance of operando microtomography to understand the evolution of chemical species and their spatial distribution before any concrete understanding of impact on catalytic performance can be realized.

5.
J Synchrotron Radiat ; 24(Pt 1): 248-256, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009564

RESUMO

With the development of fourth-generation high-brightness synchrotrons on the horizon, the already large volume of data that will be collected on imaging and mapping beamlines is set to increase by orders of magnitude. As such, an easy and accessible way of dealing with such large datasets as quickly as possible is required in order to be able to address the core scientific problems during the experimental data collection. Savu is an accessible and flexible big data processing framework that is able to deal with both the variety and the volume of data of multimodal and multidimensional scientific datasets output such as those from chemical tomography experiments on the I18 microfocus scanning beamline at Diamond Light Source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...