Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 110(23): 230801, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25167479

RESUMO

We have measured the frequency of the extremely narrow 1S-2S two-photon transition in atomic hydrogen using a remote cesium fountain clock with the help of a 920 km stabilized optical fiber. With an improved detection method we obtain f(1S-2S)=2466 061 413 187 018 (11) Hz with a relative uncertainty of 4.5×10(-15), confirming our previous measurement obtained with a local cesium clock [C. G. Parthey et al., Phys. Rev. Lett. 107, 203001 (2011)]. Combining these results with older measurements, we constrain the linear combinations of Lorentz boost symmetry violation parameters c((TX))=(3.1±1.9)×10(-11) and 0.92c((TY))+0.40c((TZ))=(2.6±5.3)×10(-11) in the standard model extension framework [D. Colladay, V. A. Kostelecký, Phys. Rev. D. 58, 116002 (1998)].

2.
Phys Rev Lett ; 107(20): 203001, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22181729

RESUMO

We have measured the 1S-2S transition frequency in atomic hydrogen via two-photon spectroscopy on a 5.8 K atomic beam. We obtain f(1S-2S) = 2,466,061,413,187,035 (10)  Hz for the hyperfine centroid, in agreement with, but 3.3 times better than the previous result [M. Fischer et al., Phys. Rev. Lett. 92, 230802 (2004)]. The improvement to a fractional frequency uncertainty of 4.2 × 10(-15) arises mainly from an improved stability of the spectroscopy laser, and a better determination of the main systematic uncertainties, namely, the second order Doppler and ac and dc Stark shifts. The probe laser frequency was phase coherently linked to the mobile cesium fountain clock FOM via a frequency comb.

3.
Phys Rev Lett ; 104(23): 233001, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20867231

RESUMO

Measuring the hydrogen-deuterium isotope shift via two-photon spectroscopy of the 1S-2S transition, we obtain 670,994,334,606(15) Hz. This is a 10-times improvement over the previous best measurement [A. Huber, Phys. Rev. Lett. 80, 468 (1998)] confirming its frequency value. A calculation of the difference of the mean square charge radii of deuterium and hydrogen results in d - p =3.82007(65) fm2, a more than twofold improvement compared to the former value.

4.
Phys Rev Lett ; 100(9): 093003, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18352704

RESUMO

We report the stopping of an atomic beam, using a series of pulsed electromagnetic coils. We use a supersonic beam of metastable neon created in a gas discharge as a monochromatic source of paramagnetic atoms. A series of coils is fired in a timed sequence to bring the atoms to near rest, where they are detected on a microchannel plate. Applications to fundamental problems in physics and chemistry are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...