Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(35): 16571-16581, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39158470

RESUMO

Exploring efficient systems to recover CO2 from the atmosphere could be a way to address the global carbon emissions issue. Herein, we report the synthesis of nanosilica (NS) functionalized with polyamidoamine (PAMAM) dendrimers (NS-PAMAM) as efficient adsorbents for CO2 capture under simulated direct air capture (DAC) (400 ppm CO2 in helium at 30 °C) and indoor air (≥400 ppm, 50 ± 3% RH at 30 °C) conditions. The results inferred that the 1st (NS-G1.0), 2nd (NS-G2.0), 3rd (NS-G3.0), and 4th (NS-G4.0) generations of the NS-PAMAM dendrimers exhibited excellent performance for CO2 capture. Compared to the other generations, NS-G3.0 demonstrated superior CO2 adsorption capacities of 0.50 mmol g-1 under simulated dry CO2 conditions (400 ppm in He), 1.02 mmol g-1 under indoor air (dry) CO2 conditions (≥400 ppm, 26 ± 3% RH), and 1.54 mmol g-1 under indoor air (humid) CO2 conditions (≥400 ppm, 50 ± 3% RH). The study included the evaluation of CO2 adsorption-desorption performance of the NS-PAMAM dendrimers under varying structural and chemical parameters, kinetics, regeneration at low temperature (80 °C), as well as CO2 adsorption under humid conditions. Additionally, NS-G3.0 displayed a substantially superior performance with stable CO2 capture displayed during ten short temperature swing adsorption (TSA) cycles, making it a promising candidate for CO2 capture from ambient air. Finally, we demonstrated the recovery and reutilization of the captured CO2 for both the synthesis of formate via carbonate hydrogenation and for the production of calcium carbonate pellets.

2.
Dalton Trans ; 53(10): 4363-4389, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38349644

RESUMO

Hydrogen is considered as a potential alternative and sustainable energy carrier, but its safe storage and transportation are still challenging due to its low volumetric energy density. Notably, C1-based substrates, methanol and formaldehyde, containing high hydrogen contents of 12.5 wt% and 6.7 wt%, respectively, can release hydrogen on demand in the presence of a suitable catalyst. Advantageously, both methanol and aqueous formaldehyde are liquid at room temperature, and hence can be stored and transported considerably more safely than hydrogen gas. Moreover, these C1-based substrates can be produced from biomass waste and can also be regenerated from CO2, a greenhouse gas. In this review, the recent progress in hydrogen production from methanol and formaldehyde over noble to non-noble metal complex-based molecular transition metal catalysts is extensively reviewed. This review also focuses on the critical role of the structure-activity relationship of the catalyst in the dehydrogenation pathway.

3.
ACS Omega ; 8(42): 38773-38793, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901502

RESUMO

Carbon dioxide (CO2), a valuable feedstock, can be reutilized as a hydrogen carrier by hydrogenating CO2 to formic acid (FA) and releasing hydrogen by FA dehydrogenation in a reversible manner. Notably, FA is liquid at room temperature and can be stored and transported considerably more safely than hydrogen gas. Herein, we extensively reviewed transition-metal-based molecular catalysts explored for reversible CO2 hydrogenation and FA dehydrogenation. This Review describes different approaches explored for carbon-neutral hydrogen storage and release by applying CO2 hydrogenation to FA/formate and the subsequent release of H2 by the dehydrogenation of FA over a wide range of molecular catalysts based on noble and non-noble metals. Emphasis is also placed on the specific catalyst-to-substrate interaction by highlighting the specific role of the catalyst in the CO2 hydrogenation-FA dehydrogenation pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA