Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Endocr Soc ; 8(1): bvad156, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38155918

RESUMO

Teriparatide (PTH (1-34)), PTHrP (1-36), and abaloparatide (ABL) have been used for the treatment of osteoporosis, but their efficacy long term is significantly limited. The 3 peptides exert time- and dose-dependent differential responses in osteoblasts, leading us to hypothesize they may also differentially modulate the osteoblast transcriptome. Treatment of mouse calvarial osteoblasts with 1 nM of the peptides for 4 hours results in RNA sequencing data with PTH (1-34) regulating 367 genes, including 194 unique genes; PTHrP (1-36) regulating 117 genes, including 15 unique genes; and ABL regulating 179 genes, including 20 unique genes. There were 83 genes shared among all 3 peptides. Gene ontology analyses showed similarities in Wnt signaling, cAMP-mediated signaling, ossification, but differences in morphogenesis of a branching structure in biological processes; receptor ligand activity, transcription factor activity, and cytokine receptor/binding activity in molecular functions. The peptides increased Vdr, Cited1, and Pde10a messenger RNAs (mRNAs) in a pattern similar to Rankl, that is, PTH (1-34) greater than ABL greater than PTHrP (1-36). mRNA abundance of other genes, including Wnt4, Wnt7, Wnt11, Sfrp4, Dkk1, Kcnk10, Hdac4, Epn3, Tcf7, Crem, Fzd5, Ppp2r2a, and Dvl3, showed that some genes were regulated similarly by all 3 peptides; others were not. Finally, small interfering RNA knockdowns of SIK1/2/3 and CRTC1/2/3 in PTH (1-34)-treated cells revealed that Vdr and Wnt4 genes are regulated by salt-inducible kinases (SIKs) and CREB-regulated transcriptional coactivators (CRTCs), while others are not. Although many studies have examined PTH signaling in the osteoblast/osteocyte, ours is the first to compare the global effects of these peptides on the osteoblast transcriptome or to analyze the roles of the SIKs and CRTCs.

2.
bioRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645806

RESUMO

Teriparatide (PTH(1-34)) and its analogs, PTHrP(1-36) and abaloparatide (ABL) have been used for the treatment of osteoporosis, but their efficacy over long-term use is significantly limited. The 3 peptides exert time- and dose-dependent differential responses in osteoblasts, leading us to hypothesize that they may also differentially modulate the osteoblast transcriptome. We show that treatment of mouse calvarial osteoblasts with 1 nM of the 3 peptides for 4 h results in RNA-Seq data with PTH(1-34) regulating 367 genes, including 194 unique genes; PTHrP(1-36) regulating 117 genes, including 15 unique genes; and ABL regulating 179 genes, including 20 unique genes. There were 83 genes shared among all 3 peptides. Gene ontology analyses showed differences in Wnt signaling, cAMP-mediated signaling, bone mineralization, morphogenesis of a branching structure in biological processes; receptor ligand activity, transcription factor activity, cytokine receptor/binding activity and many other actions in molecular functions. The 3 peptides increased Vdr, Cited1 and Pde10a mRNAs in a pattern similar to Rankl , i.e., PTH(1-34) > ABL > PTHrP(1-36). mRNA abundance of other genes based on gene/pathway analyses, including Wnt4, Wnt7, Wnt11, Sfrp4, Dkk1, Kcnk10, Hdac4, Epha3, Tcf7, Crem, Fzd5, Pp2r2a , and Dvl3 showed that some genes were regulated similarly by all 3 peptides; others were not. Finally, siRNA knockdowns of SIK1/2/3 and CRTC1/2/3 in PTH(1-34)-treated cells revealed that Vdr and Wnt4 genes are regulated by SIKs and CRTCs, while others are not. Although many studies have examined PTH signaling in the osteoblast/osteocyte, ours is the first to examine the global effects of these peptides on the osteoblast transcriptome. Further delineation of which signaling events are attributable to PTH(1-34), PTHrP(1-36) or ABL exclusively and which are shared among all 3 will help improve our understanding of the effects these peptides have on the osteoblast and lead to the refinement of PTH-derived treatments for osteoporosis.

3.
JBMR Plus ; 7(2): e10710, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36751417

RESUMO

Abaloparatide is a peptide analog of parathyroid hormone-related protein (PTHrP 1-34) and was approved in 2017 as the second osteoanabolic peptide for treating osteoporosis. We previously showed that intermittent abaloparatide is equally as effective as PTH (1-34). This study was designed to compare the catabolic effects of PTH (1-34) and abaloparatide on bone in young female wild-type mice. Two-month-old C57Bl/6J female mice were continuously infused with human PTH (1-34) or abaloparatide at 80 µg/kg BW/day or vehicle for 2 weeks. At euthanasia, DEXA-PIXImus was performed to assess bone mineral density (BMD) in the whole body, femurs, tibiae, and vertebrae. Bone turnover marker levels were measured in sera, femurs were harvested for micro-computer tomography (µCT) analyses and histomorphometry, and tibiae were separated into cortical and trabecular fractions for gene expression analyses. Our results demonstrated that the infusion of abaloparatide resulted in a similar decrease in BMD as infused PTH (1-34) at all sites. µCT and histomorphometry analyses showed similar decreases in cortical bone thickness and BMD associated with an increase in bone turnover from the increased bone formation rate found by in vivo double labeling and serum P1NP and increased bone resorption as shown by osteoclast numbers and serum cross-linked C-telopeptide. Trabecular bone did not show major changes with either treatment. Osteoblastic gene expression analyses of trabecular and cortical bone revealed that infusion of PTH (1-34) or abaloparatide led to similar and different actions in genes of osteoblast differentiation and activity. As with intermittent and in vitro treatment, both infused PTH (1-34) and abaloparatide similarly regulated downstream genes of the PTHR1/SIK/HDAC4 pathway such as Sost and Mmp13 but differed for those of the PTHR1/SIK/CRTC pathway. Taken together, at the same dose, infused abaloparatide causes the same high bone turnover as infused PTH (1-34) with a net resorption in female wild-type mice. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

4.
Am J Orthod Dentofacial Orthop ; 163(3): 378-388.e1, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36543659

RESUMO

INTRODUCTION: Parathyroid hormone (PTH) plays an important role in maintaining mineral homeostasis by regulating calcium and phosphate levels. Clinical trials have shown that peptides of PTH (1-34), PTH-related protein (PTHrP 1-36), and the new peptide modeled on PTHrP, abaloparatide, can have different anabolic effects on osteoporotic subjects, but the underlying mechanisms are still unclear. The prevalence of moderate and major gingival recession has been shown to be higher in postmenopausal women with osteoporosis. In addition, there is a significant association between osteoporosis and tooth loss. METHODS: We investigated the actions of these peptides on the cementoblasts and teeth of mice. The murine cementoblast line, OCCM-30, known to express collagen I (Col1a1), was treated with intermittent PTH (1-34), PTHrP (1-36), or abaloparatide for 6 h/d for 3 days. Microcomputed tomography was performed on the teeth of mice receiving daily injections of phosphate-buffered saline, PTH (1-34), or abaloparatide. Statistical differences were analyzed by a 2-way or 1-way analysis of variance followed by a Tukey's post-hoc test. Results are expressed as mean ± standard deviation, and P <0.05 was considered significant. RESULTS: Gene expression showed regulation of Bsp, Col1a1, Opg, Rankl, and Mmp13 by the 3 peptides in these cells. Western blots revealed that after intermittent treatment for 3 days, PTH (1-34) caused an increase in COL1A1 protein immediately after treatment. In contrast, abaloparatide showed a latent effect in increasing COL1A1 protein 18 hours after treatment. PTHrP had no effect on COL1A1 expression. Immunofluorescence confirmed the same result as the Western blots. Microcomputed tomography of teeth showed PTH (1-34) injections increased molar root mineral density in mice, whereas abaloparatide increased density in roots of incisors and molars. CONCLUSIONS: This study reveals the differential anabolic effects of intermittent PTH (1-34), PTHrP (1-36), and abaloparatide on cementoblasts, as revealed by COL1A1 expression and root mineral density. Abaloparatide may be a potential therapeutic approach for achieving improved cementogenesis.


Assuntos
Anabolizantes , Osteoporose , Feminino , Camundongos , Animais , Hormônio Paratireóideo , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Proteína Relacionada ao Hormônio Paratireóideo/uso terapêutico , Cemento Dentário , Cadeia alfa 1 do Colágeno Tipo I , Anabolizantes/farmacologia , Anabolizantes/uso terapêutico , Microtomografia por Raio-X , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Colágeno Tipo I , Raiz Dentária , Minerais/farmacologia , Minerais/uso terapêutico , Fosfatos/farmacologia , Fosfatos/uso terapêutico
5.
Cell Calcium ; 106: 102633, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35908317

RESUMO

A paper by Sun et al. identified the Ca2+-activated Cl- channel anoctamin 1 or ANO1 (TMEM16A) as an important regulator of osteoclast function by interacting with RANKL activating signaling pathways involved in bone resorption. Although Cl- transporters (e.g. ClC7, CLIC5) have been known to be involved in the active process of bone resorption, ANO1 appears to control osteoclast differentiation and function to levels beyond those of other Cl-transporters. Regulating ANO1 function might be a useful target for therapeutics in osteoporosis.


Assuntos
Reabsorção Óssea , Canais de Cloreto , Anoctamina-1 , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Osteoclastos/metabolismo
6.
Exp Biol Med (Maywood) ; 247(21): 1885-1897, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35666091

RESUMO

Delivering the parathyroid hormone (PTH) gene has been attempted preclinically in a handful of studies, but delivering full-length PTH (1-84) using adeno-associated viral (AAV) vectors has not. Given the difficulty in achieving therapeutic levels of secreted proteins using gene therapy, this study seeks to determine the feasibility of doing so with PTH. An AAV vector was used to deliver human PTH driven by a strong promoter. We demonstrate the ability to secrete full-length PTH from various cell types in vitro. PTH secretion from hepatocytes was measured over time and a fluorescent marker was used to compare the secretion rate of PTH in various cell types. Potency was measured by the ability of PTH to act on the PTH receptors of osteosarcoma cells and induced proliferation. PTH showed potency in vitro by inducing proliferation in two osteosarcoma cell lines. In vivo, AAV was administered systemically in immunocompromised mice which received xenografts of osteosarcoma cells. Animals that received the highest dose of AAV-PTH had higher liver and plasma concentrations of PTH. All dosing groups achieved measurable plasma concentrations of human PTH that were above the normal range. The high-dose group also had significantly larger tumors compared to control groups on the final day of the study. The tumors also showed dose-dependent differences in morphology. When looking at endocrine signaling and endogenous bone turnover, we observed a significant difference in tibial growth plate width in animals that received the high-dose AAV as well as dose-dependent changes in blood biomarkers related to PTH. This proof-of-concept study shows promise for further exploration of an AAV gene therapy to deliver full-length PTH for hypoparathyroidism. Additional investigation will determine efficacy in a disease model, but data shown establish bioactivity in well-established models of osteosarcoma.


Assuntos
Hormônio Paratireóideo , Humanos , Animais , Camundongos , Hormônio Paratireóideo/genética
7.
Front Cell Dev Biol ; 10: 883266, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35531096

RESUMO

Matrix-metalloproteinase-13 (MMP13) is important for bone formation and remodeling; however, its role in tooth development remains unknown. To investigate this, MMP13-knockout (Mmp13 -/- ) mice were used to analyze phenotypic changes in the dentin-pulp complex, mineralization-associated marker-expression, and mechanistic interactions. Immunohistochemistry demonstrated high MMP13-expression in pulp-tissue, ameloblasts, odontoblasts, and dentin in developing WT-molars, which reduced in adults, with human-DPC cultures demonstrating a >2000-fold increase in Mmp13-expression during mineralization. Morphologically, Mmp13 -/- molars displayed critical alterations in the dentin-phenotype, affecting dentin-tubule regularity, the odontoblast-palisade and predentin-definition with significantly reduced dentin volume (∼30% incisor; 13% molar), and enamel and dentin mineral-density. Reactionary-tertiary-dentin in response to injury was reduced at Mmp13 -/- molar cusp-tips but with significantly more dystrophic pulpal mineralization in MMP13-null samples. Odontoblast differentiation-markers, nestin and DSP, reduced in expression after MMP13-loss in vivo, with reduced calcium deposition in MMP13-null DPC cultures. RNA-sequencing analysis of WT and Mmp13 -/- pulp highlighted 5,020 transcripts to have significantly >2.0-fold change, with pathway-analysis indicating downregulation of the Wnt-signaling pathway, supported by reduced in vivo expression of the Wnt-responsive gene Axin2. Mmp13 interaction with Axin2 could be partly responsible for the loss of odontoblastic activity and alteration to the tooth phenotype and volume which is evident in this study. Overall, our novel findings indicate MMP13 as critical for tooth development and mineralization processes, highlighting mechanistic interaction with the Wnt-signaling pathway.

8.
Biol Chem ; 403(3): 305-315, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34643076

RESUMO

Transforming growth factor beta 1 (TGF-ß1) functions as a coupling factor between bone development and resorption. Matrix metalloproteinase 13 (MMP13) is important in bone remodeling, and skeletal dysplasia is caused by a deficiency in MMP13 expre-ssion. Runx2, a transcription factor is essential for bone development, and MMP13 is one of its target genes. TGF-ß1 promoted Runx2 phosphorylation, which was necessary for MMP13 production in osteoblastic cells, as we previously shown. Since the phosphorylation of some proteins causes them to be degraded by the ubiquitin/proteasome pathway, we hypothesized that TGF-ß1 might stabilize the phosphorylated Runx2 protein for its activity by other post-translational modification (PTM). This study demonstrated that TGF-ß1-stimulated Runx2 acetylation in rat osteoblastic cells. p300, a histone acetyltransferase interacted with Runx2, and it promoted Runx2 acetylation upon TGF-ß1-treatment in these cells. Knockdown of p300 decreased the TGF-ß1-stimulated Runx2 acetylation and MMP13 expression in rat osteoblastic cells. TGF-ß1-treatment stimulated the acetylated Runx2 bound at the MMP13 promoter, and knockdown of p300 reduced this effect in these cells. Overall, our studies identified the transcriptional regulation of MMP13 by TGF-ß1 via Runx2 acetylation in rat osteoblastic cells, and these findings contribute to the knowledge of events presiding bone metabolism.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Metaloproteinase 13 da Matriz , Osteoblastos , Fator de Crescimento Transformador beta1 , Acetilação , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Osteoblastos/metabolismo , Processamento de Proteína Pós-Traducional , Ratos , Fator de Crescimento Transformador beta1/farmacologia
9.
Bone ; 143: 115762, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33212319

RESUMO

Parathyroid hormone (PTH) is necessary for the regulation of calcium homeostasis and PTH (1-34) was the first approved osteoanabolic therapy for osteoporosis. It is well established that intermittent PTH increases bone formation and that bone remodeling and several cytokines and chemokines play an essential role in this process. Earlier, we had established that the chemokine, monocyte chemoattractant protein-1 (MCP-1/CCL2), was the most highly stimulated gene in rat bone after intermittent PTH injections. Nevertheless, MCP-1 function in bone appears to be complicated. To identify the primary cells expressing MCP-1 in response to PTH, we performed in situ hybridization of rat bone sections after hPTH (1-34) injections and showed that bone-lining osteoblasts are the primary cells that express MCP-1 after PTH treatment. We previously demonstrated MCP-1's importance by showing that PTH's anabolic effects are abolished in MCP-1 null mice, further implicating a role for the chemokine in this process. To establish whether rhMCP-1 peptide treatment could rescue the anabolic effect of PTH in MCP-1 null mice, we treated 4-month-old wild-type (WT) mice with hPTH (1-34) and MCP-1-/- mice with rhMCP-1 and/or hPTH (1-34) for 6 weeks. Micro-computed tomography (µCT) analysis of trabecular and cortical bone showed that MCP-1 injections for 6 weeks rescued the PTH anabolic effect in MCP-1-/- mice. In fact, the combination of rhMCP-1 and hPTH (1-34) has a synergistic anabolic effect compared with monotherapies. Mechanistically, PTH-enhanced transforming growth factor-ß (TGF-ß) signaling is abolished in the absence of MCP-1, while MCP-1 peptide treatment restores TGF-ß signaling in the bone marrow. Here, we have shown that PTH regulates the transcription of the chemokine MCP-1 in osteoblasts and determined how MCP-1 affects bone cell function in PTH's anabolic actions. Taken together, our current work indicates that intermittent PTH stimulates osteoblastic secretion of MCP-1, which leads to increased TGF-ß signaling, implicating it in PTH's anabolic actions.


Assuntos
Anabolizantes , Fator de Crescimento Transformador beta , Anabolizantes/farmacologia , Animais , Osso e Ossos , Quimiocina CCL2 , Camundongos , Osteoblastos , Hormônio Paratireóideo/farmacologia , Ratos , Microtomografia por Raio-X
10.
J Cell Physiol ; 235(11): 7996-8009, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31960421

RESUMO

Matrix metalloproteinase-13 (MMP-13) plays a predominant role in endochondral bone formation and bone remodeling. Parathyroid hormone (PTH) stimulates the expression of MMP-13 via Runx2, a bone transcription factor in rat osteoblastic cells (UMR106-01), and histone deacetylase 4 (HDAC4) acts as a corepressor of Runx2. Moreover, microRNAs (miRNAs) play an important role in regulating genes posttranscriptionally. Here, we hypothesized that PTH upregulates the miRNAs targeting HDAC4, which could lead to increased Runx2 activity and MMP-13 expression in rat osteoblastic cells. We identified several miRNAs that putatively target rat HDAC4 using bioinformatics tools. miR-873-3p was significantly upregulated by PTH in rat osteoblasts. miR-873-3p overexpression downregulated HDAC4 protein expression, increased Runx2 binding at the MMP-13 promoter, and increased MMP-13 messenger RNA expression in UMR106-01 cells. A luciferase reporter assay identified the direct targeting of miR-873-3p at the 3'-untranslated region of HDAC4. Thus, miR-873-3p targeted HDAC4 and relieved the corepressor effect of HDAC4 on Runx2 for MMP-13 expression in rat osteoblasts. This study advances our knowledge of posttranscriptional gene regulation occurring in bone and bone-related diseases and clarifies the role of miRNAs as diagnostic biomarkers.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , Histona Desacetilases/genética , Metaloproteinase 13 da Matriz/genética , MicroRNAs/genética , Osteogênese/genética , Animais , Remodelação Óssea/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Osteoblastos/metabolismo , Hormônio Paratireóideo/genética , Ratos , Ativação Transcricional/genética
11.
J Bone Miner Res ; 35(4): 714-724, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31793033

RESUMO

Abaloparatide, a novel analog of parathyroid hormone-related protein (PTHrP 1-34), became in 2017 the second osteoanabolic therapy for the treatment of osteoporosis. This study aims to compare the effects of PTH (1-34), PTHrP (1-36), and abaloparatide on bone remodeling in male mice. Intermittent daily subcutaneous injections of 80 µg/kg/d were administered to 4-month-old C57Bl/6J male mice for 6 weeks. During treatment, mice were followed by DXA-Piximus to assess changes in bone mineral density (BMD) in the whole body, femur, and tibia. At either 4 or 18 hours after the final injection, femurs were harvested for µCT analyses and histomorphometry, sera were assayed for bone turnover marker levels, and tibias were separated into cortical, trabecular, and bone marrow fractions for gene expression analyses. Our results showed that, compared with PTH (1-34), abaloparatide resulted in a similar increase in BMD at all sites, whereas no changes were found with PTHrP (1-36). With both PTH (1-34) and abaloparatide, µCT and histomorphometry analyses revealed similar increases in bone volume associated with an increased trabecular thickness, in bone formation rate as shown by P1NP serum level and in vivo double labeling, and in bone resorption as shown by CTX levels and osteoclast number. Gene expression analyses of trabecular and cortical bone showed that PTH (1-34) and abaloparatide led to different actions in osteoblast differentiation and activity, with increased Runx2, Col1A1, Alpl, Bsp, Ocn, Sost, Rankl/Opg, and c-fos at different time points. Abaloparatide seems to generate a faster response on osteoblastic gene expression than PTH (1-34). Taken together, abaloparatide at the same dose is as effective as PTH (1-34) as an osteoanabolic, with an increase in bone formation but also an increase in bone resorption in male mice. © 2019 American Society for Bone and Mineral Research.


Assuntos
Osso e Ossos , Proteína Relacionada ao Hormônio Paratireóideo , Animais , Densidade Óssea , Remodelação Óssea , Osso e Ossos/diagnóstico por imagem , Masculino , Camundongos , Hormônio Paratireóideo/farmacologia
12.
J Biol Chem ; 293(52): 20200-20213, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30377251

RESUMO

Osteoporosis can result from the loss of sex hormones and/or aging. Abaloparatide (ABL), an analog of parathyroid hormone-related protein (PTHrP(1-36)), is the second osteoanabolic therapy approved by the United States Food and Drug Administration after teriparatide (PTH(1-34)). All three peptides bind PTH/PTHrP receptor type 1 (PTHR1), but the effects of PTHrP(1-36) or ABL in the osteoblast remain unclear. We show that, in primary calvarial osteoblasts, PTH(1-34) promotes a more robust cAMP response than PTHrP(1-36) and ABL and causes a greater activation of protein kinase A (PKA) and cAMP response element-binding protein (CREB). All three peptides similarly inhibited sclerostin (Sost). Interestingly, the three peptides differentially modulated two other PKA target genes, c-Fos and receptor activator of NF-κB ligand (Rankl), and the latter both in vitro and in vivo Knockdown of salt-inducible kinases (SIKs) 2 and 3 and CREB-regulated transcription coactivator 3 (CRTC3), indicated that all three are part of the pathway that regulates osteoblastic Rankl expression. We also show that the peptides differentially regulate the nuclear localization of CRTC2 and CRTC3, and that this correlates with PKA activation. Moreover, inhibition of protein phosphatases 1 and 2A (PP1/PP2A) activity revealed that they play a major role in both PTH-induced Rankl expression and the effects of PTH(1-34) on CRTC3 localization. In summary, in the osteoblast, the effects of PTH(1-34), PTHrP(1-36), and ABL on Rankl are mediated by differential stimulation of cAMP/PKA signaling and by their downstream effects on SIK2 and -3, PP1/PP2A, and CRTC3.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Osteoblastos/metabolismo , Hormônio Paratireóideo , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ligante RANK/biossíntese , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de AMP Cíclico/genética , Camundongos , Osteoblastos/citologia , Hormônio Paratireóideo/análogos & derivados , Hormônio Paratireóideo/farmacologia , Proteína Fosfatase 1/genética , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/genética , Ligante RANK/genética , Ratos , Transdução de Sinais/genética , Fatores de Transcrição/genética
13.
J Bone Miner Res ; 33(7): 1362-1375, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29544022

RESUMO

Histone deacetylase 4 (Hdac4) is known to control chondrocyte hypertrophy and bone formation. We have previously shown that parathyroid hormone (PTH) regulates many aspects of Hdac4 function in osteoblastic cells in vitro; however, in vivo confirmation was previously precluded by preweaning lethality of the Hdac4-deficient mice. To analyze the function of Hdac4 in bone in mature animals, we generated mice with osteoblast lineage-specific knockout of Hdac4 (Hdac4ob-/- ) by crossing transgenic mice expressing Cre recombinase under the control of a 2.3-kb fragment of the Col1a1 promoter with mice bearing loxP-Hdac4. The Hdac4ob-/- mice survive to adulthood and developed a mild skeletal phenotype. At age 12 weeks, they had short, irregularly shaped and stiff tails due to smaller tail vertebrae, with almost no growth plates. The tibial growth plate zone was also thinned, and Mmp13 and Sost mRNAs were increased in the distal femurs of Hdac4ob-/- mice. Immunohistochemistry showed that sclerostin was elevated in Hdac4ob-/- mice, suggesting that Hdac4 inhibits its gene and protein expression. To determine the effect of PTH in these mice, hPTH (1-34) or saline were delivered for 14 days with subcutaneously implanted devices in 8-week-old female Hdac4ob-/- and wild-type (Hdac4fl/fl ) mice. Serum CTX, a marker of bone resorption, was increased in Hdac4ob-/- mice with or without PTH treatment. Tibial cortical bone volume/total volume (BV/TV), cortical thickness (Ct.Th), and relative cortical area (RCA) were decreased in Hdac4ob-/- mice, but PTH caused no further decrease in Hdac4ob-/- mice. Tibial trabecular BV/TV and thickness were not changed significantly in Hdac4ob-/- mice but decreased with PTH treatment. These results indicate that Hdac4 inhibits bone resorption and has anabolic effects via inhibiting Mmp13 and Sost/sclerostin expression. Hdac4 influences cortical bone mass and thickness and knockout of Hdac4 prevents the catabolic effect of PTH in cortical bone. © 2018 American Society for Bone and Mineral Research.


Assuntos
Osso e Ossos/metabolismo , Deleção de Genes , Histona Desacetilases/genética , Osteoblastos/enzimologia , Proteínas Adaptadoras de Transdução de Sinal , Alelos , Anabolizantes/farmacologia , Animais , Biomarcadores/metabolismo , Peso Corporal , Reabsorção Óssea/patologia , Osso e Ossos/efeitos dos fármacos , Osso Esponjoso/efeitos dos fármacos , Osso Esponjoso/patologia , Osso Cortical/efeitos dos fármacos , Osso Cortical/patologia , Feminino , Glicoproteínas/genética , Glicoproteínas/metabolismo , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/patologia , Histona Desacetilases/deficiência , Histona Desacetilases/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Tamanho do Órgão , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
J Cell Physiol ; 233(2): 1082-1094, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28419442

RESUMO

Transforming growth factor-beta1 (TGF-ß1), a highly abundant growth factor in skeletal tissues, stimulates matrix metalloproteinase-13 (MMP-13) expression in osteoblastic cells. MMP-13 plays a critical role in bone remodeling. Runx2, a bone transcription factor, is required for TGF-ß1-mediated stimulation of MMP-13 expression in osteoblastic cells. In this study, the molecular mechanism responsible for TGF-ß1-stimulation of MMP-13 expression via Runx2 in osteoblastic cells was elucidated. TGF-ß1 stimulated the phosphorylation of Runx2 at serine amino acids, and ERK inhibition blocked this effect in rat (UMR106-01) and human (MG-63) osteoblastic cells. Pretreatment with okadaic acid, a serine-threonine phosphatase inhibitor, increased Runx2 serine phosphorylation in osteoblastic cells. When cells were pretreated with an ERK inhibitor, TGF-ß1-mediated stimulation of MMP-13 mRNA expression decreased. Nano-ESI/LC/MS analysis identified that TGF-ß1 stimulates Runx2 phosphorylation at three serine amino acids. Transient transfection of mouse mesenchymal stem cells (C3H10T1/2) with Runx2 serine mutant constructs decreased TGF-ß1-mediated Runx2 serine phosphorylation. A luciferase reporter assay identified that TGF-ß1 stimulated MMP-13 promoter activity in these cells only in the presence of the wild Runx2 construct, and not with mutant Runx2. Thus, TGF-ß1 stimulates the phosphorylation of Runx2 at three serine amino acids, and this event is required for MMP-13 expression in osteoblastic cells. Hence, this study contributes to the knowledge of events governing bone remodeling and bone-related diseases.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Metaloproteinase 13 da Matriz/biossíntese , Osteoblastos/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Animais , Remodelação Óssea/efeitos dos fármacos , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Indução Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Metaloproteinase 13 da Matriz/genética , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Camundongos Endogâmicos C3H , Mutação , Ácido Okadáico/farmacologia , Osteoblastos/enzimologia , Osteogênese/efeitos dos fármacos , Fosforilação , Regiões Promotoras Genéticas , Ratos , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Transfecção
15.
Bone ; 106: 194-203, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28965919

RESUMO

Pulsed electromagnetic fields (PEMFs) can be effective in promoting the healing of delayed union or nonunion fractures. We previously reported that PEMF (Spinal-Stim® by Orthofix, Inc., Lewisville, TX) stimulated proliferation, differentiation and mineralization of rat calvarial osteoblastic cells in culture. In the present work we investigated the effects of PEMF (Physio-Stim® by Orthofix, Inc., Lewisville, TX) on human bone marrow macrophages (hBMMs) differentiated to osteoclasts. PEMF had striking inhibitory effects on formation of osteoclasts from hBMMs from both younger and older women. There were significantly greater changes in gene expression as ascertained by RNAseq from cells from older women. Interestingly, all of the genes identified by RNAseq were upregulated, and all were genes of mesenchymal or osteoblastic cells and included members of the TGF-ß signaling pathway and many extracellular matrix proteins, as well as RANKL and osteoprotegerin, indicating the mixed nature of these cultures. From these results, we suggest that PEMF can inhibit osteoclast formation via action on osteoblasts. Thus, PEMF may be very effective for bone mass maintenance in subjects with osteoporosis.


Assuntos
Campos Eletromagnéticos , Osteoblastos/citologia , Osteoblastos/efeitos da radiação , Osteoclastos/citologia , Osteoclastos/efeitos da radiação , Adolescente , Adulto , Western Blotting , Diferenciação Celular/efeitos da radiação , Células Cultivadas , Feminino , Humanos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
16.
Sci Rep ; 7(1): 15300, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127344

RESUMO

The bone catabolic actions of parathyroid hormone (PTH) are seen in patients with hyperparathyroidism, or with infusion of PTH in rodents. We have previously shown that the chemokine, monocyte chemoattractant protein-1 (MCP-1), is a mediator of PTH's anabolic effects on bone. To determine its role in PTH's catabolic effects, we continuously infused female wild-type (WT) and MCP-1-/- mice with hPTH or vehicle. Microcomputed tomography (µCT) analysis of cortical bone showed that hPTH-infusion induced significant bone loss in WT mice. Further, µCT analysis of trabecular bone revealed that, compared with the vehicle-treated group, the PTH-treated WT mice had reduced trabecular thickness and trabecular number. Notably, MCP-1-/- mice were protected against PTH-induced cortical and trabecular bone loss as well as from increases in serum CTX (C-terminal crosslinking telopeptide of type I collagen) and TRACP-5b (tartrate-resistant acid phosphatase 5b). In vitro, bone marrow macrophages (BMMs) from MCP-1-/- and WT mice were cultured with M-CSF, RANKL and/or MCP-1. BMMs from MCP-1-/- mice showed decreased multinucleated osteoclast formation compared with WT mice. Taken together, our work demonstrates that MCP-1 has a role in PTH's catabolic effects on bone including monocyte and macrophage recruitment, osteoclast formation, bone resorption, and cortical and trabecular bone loss.


Assuntos
Reabsorção Óssea/metabolismo , Quimiocina CCL2/metabolismo , Hiperparatireoidismo , Osteoclastos/metabolismo , Hormônio Paratireóideo/efeitos adversos , Animais , Reabsorção Óssea/induzido quimicamente , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Osso Esponjoso/metabolismo , Osso Esponjoso/patologia , Quimiocina CCL2/genética , Osso Cortical/metabolismo , Osso Cortical/patologia , Modelos Animais de Doenças , Feminino , Humanos , Hiperparatireoidismo/induzido quimicamente , Hiperparatireoidismo/genética , Hiperparatireoidismo/metabolismo , Hiperparatireoidismo/patologia , Camundongos , Camundongos Knockout , Osteoclastos/patologia , Hormônio Paratireóideo/farmacologia , Microtomografia por Raio-X
17.
Endocrinology ; 158(11): 3778-3791, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973134

RESUMO

Parathyroid hormone (PTH) regulates the transcription of many genes in the osteoblast. One of these genes is Mmp13, which is involved in bone remodeling and early stages of endochondral bone formation. Previously, we reported that PTH induces Mmp13 transcription by regulating the dissociation of histone deacetylase 4 (HDAC4) from runt-related transcription factor 2 (Runx2), and the association of the HATs, p300, and p300/CREB binding protein (CBP)-associated factor. It is known that, in addition to Runx2, HDAC4 binds to the transcription factor, myocyte-specific enhancer factor 2c (MEF2C), and represses its activity. In this work, we investigated whether MEF2C participates in PTH-stimulated Mmp13 gene expression in osteoblastic cells and how it does so. Knockdown of Mef2c in UMR 106-01 cells repressed Mmp13 messenger RNA expression and promoter activity with or without PTH treatment. Chromatin immunoprecipitation (ChIP) assays showed that MEF2C associated with the Mmp13 promoter; this increased after 4 hours of PTH treatment. ChIP-reChIP results indicate that endogenous MEF2C associates with HDAC4 on the Mmp13 promoter; after PTH treatment, this association decreased. From gel shift, ChIP, and promoter-reporter assays, MEF2C was found to associate with the activator protein-1 (AP-1) site without directly binding to DNA and had its stimulatory effect through interaction with c-FOS. In conclusion, MEF2C is necessary for Mmp13 gene expression at the transcriptional level and participates in PTH-stimulated Mmp13 gene expression by increased binding to c-FOS at the AP-1 site in the Mmp13 promoter. The observation of MEF2C interacting with a member of the AP-1 transcription factor family provides knowledge of the functions of HDAC4, c-FOS, and MEF2C.


Assuntos
Metaloproteinase 13 da Matriz/genética , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Hormônio Paratireóideo/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição MEF2/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos , Transcrição Gênica/efeitos dos fármacos
18.
Stem Cells Int ; 2017: 2450327, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28512472

RESUMO

Pulsed electromagnetic fields (PEMFs) have been documented to promote bone fracture healing in nonunions and increase lumbar spinal fusion rates. However, the molecular mechanisms by which PEMF stimulates differentiation of human bone marrow stromal cells (hBMSCs) into osteoblasts are not well understood. In this study the PEMF effects on hBMSCs were studied by microarray analysis. PEMF stimulation of hBMSCs' cell numbers mainly affected genes of cell cycle regulation, cell structure, and growth receptors or kinase pathways. In the differentiation and mineralization stages, PEMF regulated preosteoblast gene expression and notably, the transforming growth factor-beta (TGF-ß) signaling pathway and microRNA 21 (miR21) were most highly regulated. PEMF stimulated activation of Smad2 and miR21-5p expression in differentiated osteoblasts, and TGF-ß signaling was essential for PEMF stimulation of alkaline phosphatase mRNA expression. Smad7, an antagonist of the TGF-ß signaling pathway, was found to be miR21-5p's putative target gene and PEMF caused a decrease in Smad7 expression. Expression of Runx2 was increased by PEMF treatment and the miR21-5p inhibitor prevented the PEMF stimulation of Runx2 expression in differentiating cells. Thus, PEMF could mediate its effects on bone metabolism by activation of the TGF-ß signaling pathway and stimulation of expression of miR21-5p in hBMSCs.

19.
Artigo em Inglês | MEDLINE | ID: mdl-28424660

RESUMO

Chemokines are small molecules that play a crucial role as chemoattractants for several cell types, and their components are associated with host immune responses and repair mechanisms. Chemokines selectively recruit monocytes, neutrophils, and lymphocytes and induce chemotaxis through the activation of G protein-coupled receptors. Two well-described chemokine families (CXC and CC) are known to regulate the localization and trafficking of immune cells in cases of injury, infection, and tumors. Monocyte chemoattractant protein 1 (MCP-1/CCL2) is one of the important chemokines from the CC family that controls migration and infiltration of monocytes/macrophages during inflammation. CCL2 is profoundly expressed in osteoporotic bone and prostate cancer-induced bone resorption. CCL2 also regulates physiological bone remodeling in response to hormonal and mechanical stimuli. Parathyroid hormone (PTH) has multifaceted effects on bone, depending on the mode of administration. Intermittent PTH increases bone in vivo by increasing the number and activity of osteoblasts, whereas a continuous infusion of PTH decreases bone mass by stimulating a net increase in bone resorption. CCL2 is essential for both anabolic and catabolic effects of PTH. In this review, we will discuss the pharmacological role of PTH and involvement of CCL2 in the processes of PTH-mediated bone remodeling.

20.
Bone ; 90: 142-51, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27320207

RESUMO

Histone deacetylase 4 (Hdac4) regulates chondrocyte hypertrophy. Hdac4(-/-) mice are runted in size and do not survive to weaning. This phenotype is primarily due to the acceleration of onset of chondrocyte hypertrophy and, as a consequence, inappropriate endochondral mineralization. Previously, we reported that Hdac4 is a repressor of matrix metalloproteinase-13 (Mmp13) transcription, and the absence of Hdac4 leads to increased expression of MMP-13 both in vitro (osteoblastic cells) and in vivo (hypertrophic chondrocytes and trabecular osteoblasts). MMP-13 is thought to be involved in endochondral ossification and bone remodeling. To identify whether the phenotype of Hdac4(-/-) mice is due to up-regulation of MMP-13, we generated Hdac4/Mmp13 double knockout mice and determined the ability of deletion of MMP-13 to rescue the Hdac4(-/-) mouse phenotype. Mmp13(-/-) mice have normal body size. Hdac4(-/-)/Mmp13(-/-) double knockout mice are significantly heavier and larger than Hdac4(-/-) mice, they survive longer, and they recover the thickness of their growth plate zones. In Hdac4(-/-)/Mmp13(-/-) double knockout mice, alkaline phosphatase (ALP) expression and TRAP-positive osteoclasts were restored (together with an increase in Mmp9 expression) but osteocalcin (OCN) was not. Micro-CT analysis of the tibiae revealed that Hdac4(-/-) mice have significantly decreased cortical bone area compared with the wild type mice. In addition, the bone architectural parameter, bone porosity, was significantly decreased in Hdac4(-/-) mice. Hdac4(-/-)/Mmp13(-/-) double knockout mice recover these cortical parameters. Likewise, Hdac4(-/-) mice exhibit significantly increased Tb.Th and bone mineral density (BMD) while the Hdac4(-/-)/Mmp13(-/-) mice significantly recovered these parameters toward normal for this age. Taken together, our findings indicate that the phenotype seen in the Hdac4(-/-) mice is partially derived from elevation in MMP-13 and may be due to a bone remodeling disorder caused by overexpression of this enzyme.


Assuntos
Osso e Ossos/enzimologia , Deleção de Genes , Histona Desacetilases/genética , Metaloproteinase 13 da Matriz/metabolismo , Animais , Estatura , Peso Corporal , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia , Osso Cortical/diagnóstico por imagem , Osso Cortical/patologia , Feminino , Regulação da Expressão Gênica , Genótipo , Histona Desacetilases/deficiência , Histona Desacetilases/metabolismo , Humanos , Imuno-Histoquímica , Metaloproteinase 13 da Matriz/deficiência , Camundongos Endogâmicos C57BL , Fenótipo , Análise de Sobrevida , Fosfatase Ácida Resistente a Tartarato/metabolismo , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...