Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446948

RESUMO

The main aim of the current project was to investigate the effect of the linker size in 4-alkyl-5-aryl-1,2,4-triazole-3-thione derivatives, known as a group of antiepileptic drug candidates, on their affinity towards voltage-gated sodium channels (VGSCs). The rationale of the study was based both on the SAR observations and docking simulations of the interactions between the designed ligands and the binding site of human VGSC. HYDE docking scores, which describe hydrogen bonding, desolvation, and hydrophobic effects, obtained for 5-[(3-chlorophenyl)ethyl]-4-butyl/hexyl-1,2,4-triazole-3-thiones, justified their beneficial sodium channel blocking activity. The results of docking simulations were verified using a radioligand binding assay with [3H]batrachotoxin. Unexpectedly, although the investigated triazole-based compounds acted as VGSC ligands, their affinities were lower than those of the respective analogs containing shorter alkyl linkers. Since numerous sodium channel blockers are recognized as antiepileptic agents, the obtained 1,2,4-triazole derivatives were examined for antiepileptic potential using an experimental model of tonic-clonic seizures in mice. Median effective doses (ED50) of the compounds examined in MES test reached 96.6 ± 14.8 mg/kg, while their median toxic doses (TD50), obtained in the rotarod test, were even as high as 710.5 ± 47.4 mg/kg.


Assuntos
Anticonvulsivantes , Tionas , Camundongos , Humanos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/química , Tionas/farmacologia , Ligantes , Triazóis/química
2.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269966

RESUMO

In our research, we used nicotinic acid as a starting compound, which was subjected to a series of condensation reactions with appropriate aldehydes. As a result of these reactions, we were able to obtain a series of twelve acylhydrazones, two of which showed promising activity against Gram-positive bacteria (MIC = 1.95-15.62 µg/mL), especially against Staphylococcus epidermidis ATCC 12228 (MIC = 1.95 µg/mL). Moreover, the activity of compound 13 against the Staphylococcus aureus ATCC 43300 strain, i.e., the MRSA strain, was MIC = 7.81 µg/mL. Then, we subjected the entire series of acylhydrazones to a cyclization reaction in the acetic anhydride, thanks to which we were able to obtain twelve new 3-acetyl-2,5-disubstituted-1,3,4-oxadiazoline derivatives. Obtained 1,3,4-oxadiazolines were also tested for antimicrobial activity. The results showed high activity of compound 25 with a 5-nitrofuran substituent, which was active against all tested strains. The most promising activity of this compound was found against Gram-positive bacteria, in particular against Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 6538 (MIC = 7.81 µg/mL) and ATCC 43300 MRSA strains (MIC = 15.62 µg/mL). Importantly, the best performing compounds did not show cytotoxicity against normal cell lines. It seems practical to use some of these compounds or their derivatives in the future in the prevention and treatment of infections caused by some pathogenic or opportunistic microorganisms.


Assuntos
Niacina , Antibacterianos/farmacologia , Bacillus subtilis , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Staphylococcus aureus , Relação Estrutura-Atividade
3.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948461

RESUMO

Antibiotic resistance is now a global problem, and the lack of effective antimicrobial agents for the treatment of diseases caused by resistant microbes is increasing. The 3-acetyl-2,5-disubstituted-1,3,4-oxadiazolines presented in this article may provide a good starting point for the development of potential new effective antimicrobial agents useful in the treatment of bacterial and fungal infections. Particular attention is drawn to the 1,3,4-oxadiazole derivative marked with the number 29 with 5-nitrofuran-2-yl substituent in its chemical structure. This substance showed a strong bactericidal effect, especially against Staphylococcus spp., and no cytotoxicity to the L929 normal cell line.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Oxidiazóis/farmacologia , Staphylococcus/crescimento & desenvolvimento , Antibacterianos/síntese química , Antibacterianos/química , Linhagem Celular , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Staphylococcus/efeitos dos fármacos , Relação Estrutura-Atividade
4.
Molecules ; 25(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33322054

RESUMO

The aim of our study was the two-stage synthesis of 1,3,4-oxadiazole derivatives. The first step was the synthesis of hydrazide-hydrazones from 3-methyl-4-nitrobenzhydrazide and the corresponding substituted aromatic aldehydes. Then, the synthesized hydrazide-hydrazones were cyclized with acetic anhydride to obtain new 3-acetyl-2,3-disubstituted-1,3,4-oxadiazolines. All of obtained compounds were tested in in vitro assays to establish their potential antimicrobial activity and cytotoxicity. Our results indicated that few of the newly synthesized compounds had some antimicrobial activity, mainly compounds 20 and 37 towards all used reference bacterial strains (except Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa) and fungi. These substances showed a strong or powerful bactericidal effect, especially against Staphylococcus spp. belonging to Gram-positive bacteria. Compound 37 was active against Staphylococcus epidermidis at minimal inhibitory concentration (MIC) = 0.48 µg/mL and was characterized by low cytotoxicity. This compound possessed quinolin-4-yl substituent in the second position of 1,3,4-oxadiazole ring and 3-methyl-4-nitrophenyl in position 5. High effectiveness and safety of these derivatives make them promising candidates as antimicrobial agents. Whereas the compound 20 with the 5-iodofurane substituent in position 2 of the 1,3,4-oxadiazole ring showed the greatest activity against S. epidermidis at MIC = 1.95 µg/mL.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Oxidiazóis/síntese química , Oxidiazóis/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxidiazóis/química , Relação Estrutura-Atividade
5.
Oncol Lett ; 20(5): 136, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32934704

RESUMO

Cancer treatment remains a serious challenge worldwide. Thus, finding novel antitumour agents is of great importance. In the present study, nine new benzenesulphonohydrazide derivatives (1-9) were synthesized, and the chemical structures of the obtained compounds were confirmed by spectral analysis methods, including IR, 1H nuclear magnetic resonance (NMR) and 13C NMR. Experimental lipophilicity values were established using reversed phase-high performance thin layer chromatography. The antiproliferative activity of the synthesized compounds was tested against three tumour cell lines (769-P, HepG2 and NCI-H2170) and one normal cell line (Vero). Among the newly developed molecules, compound 4 exhibited generally the highest cytotoxicity across all tumour cell lines, and it was highly selective. However, higher selectivity towards the tested cancer cell lines was observed using compound 2, when compared with compound 4, which also exhibited significant antiproliferative activity against these tumour cells. In 769-P cells, compounds 5 and 6 were the most selective among all tested compounds. Compound 5 exhibited high cytotoxicity with an estimated IC50 value of 1.94 µM. In the NCI-H2170 cell line, compound 7 was the most cytotoxic and the most selective. In brief, the combination of fluorine and bromine substituents at the phenyl ring showed the most promising results, exerting high cytotoxicity and selectivity towards cancer cells. The renal adenocarcinoma cell line (769-P) appeared to be the most sensitive to the anticancer properties of the novel benzenesulphonohydrazones.

6.
Chem Biodivers ; 16(6): e1900082, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31050208

RESUMO

Thirteen new 3-acetyl-2,5-disubstituted-1,3,4-oxadiazoline derivatives were synthesized from corresponding hydrazide-hydrazones of isonicotinic acid in the reaction with acetic anhydride. The obtained compounds were identified with the use of spectral methods (IR, 1 H-NMR, 13 C-NMR, MS). In vitro antimicrobial activity screening of synthesized compounds against a panel of bacteria and fungi revealed interesting antibacterial and antifungal activity of tested 1,3,4-oxadiazoline derivatives, which is comparable to that of commonly used antimicrobial agents.


Assuntos
Anti-Infecciosos/síntese química , Oxidiazóis/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Oxidiazóis/síntese química , Oxidiazóis/farmacologia
7.
Arch Pharm Res ; 41(6): 633-645, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29619676

RESUMO

This article describes the synthesis and antimicrobial activity evaluation of new pipemidic acid derivatives. New compounds were obtained on the basis of Mannich reaction of 4,5-disubstituted 1,2,4-triazole-3-thiones with pipemidic acid. Antimicrobial tests revealed high antibacterial activity of obtained derivatives. Gram-negative rods belonging to Enterobacteriaceae family were particularly most sensitive to new pipemidic acid derivatives. Synthesized compounds exhibited very strong activity towards Proteus mirabilis ATCC 12453, Salmonella typhimurium ATCC 14028 and Escherichia coli ATCC 25922. The minimum inhibitory concentrations of new pipemidic acid derivatives which inhibited the growth of these bacteria were 0.98-7.81 µg/ml, 0.98-7.81 µg/ml and 0.98-3.91 µg/ml, respectively. The antibacterial activity of newly synthesized pipemidic acid derivatives in many cases was far better than the activity of substances used as positive controls (nitrofurantoin, cefuroxime, ampicillin and pipemidic acid).


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Ácido Pipemídico/farmacologia , Antibacterianos/síntese química , Testes de Sensibilidade Microbiana , Ácido Pipemídico/análogos & derivados , Ácido Pipemídico/síntese química , Tionas/química , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...