Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ovarian Res ; 17(1): 86, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654363

RESUMO

Target-driven cancer therapy is a notable advancement in precision oncology that has been accompanied by substantial medical accomplishments. Ovarian cancer is a highly frequent neoplasm in women and exhibits significant genomic and clinical heterogeneity. In a previous publication, we presented an extensive bioinformatics study aimed at identifying specific biomarkers associated with ovarian cancer. The findings of the network analysis indicate the presence of a cluster of nine dysregulated hub genes that exhibited significance in the underlying biological processes and contributed to the initiation of ovarian cancer. Here in this research article, we are proceeding our previous research by taking all hub genes into consideration for further analysis. GEPIA2 was used to identify patterns in the expression of critical genes. The KM plotter analysis indicated that the out of all genes 5 genes are statistically significant. The cBioPortal platform was further used to investigate the frequency of genetic mutations across the board and how they affected the survival of the patients. Maximum mutation was reported by ELAVL2. In order to discover viable therapeutic candidates after competitive inhibition of ELAVL2 with small molecular drug complex, high throughput screening and docking studies were used. Five compounds were identified. Overall, our results suggest that the ELAV-like protein 2-ZINC03830554 complex was relatively stable during the molecular dynamic simulation. The five compounds that have been found can also be further examined as potential therapeutic possibilities. The combined findings suggest that ELAVL2, together with their genetic changes, can be investigated in therapeutic interventions for precision oncology, leveraging early diagnostics and target-driven therapy.


Assuntos
Biologia Computacional , Neoplasias Ovarianas , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Feminino , Biologia Computacional/métodos , Mutação , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Terapia de Alvo Molecular , Simulação de Acoplamento Molecular , Proteína Semelhante a ELAV 2/genética
2.
Biology (Basel) ; 12(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36829472

RESUMO

Ovarian cancer is the eighth-most common cancer in women and has the highest rate of death among all gynecological malignancies in the Western world. Increasing evidence shows that miRNAs are connected to the progression of ovarian cancer. In the current study, we focus on the identification of miRNA and its associated genes that are responsible for the early prognosis of patients with ovarian cancer. The microarray dataset GSE119055 used in this study was retrieved via the publicly available GEO database by NCBI for the analysis of DEGs. The miRNA GSE119055 dataset includes six ovarian carcinoma samples along with three healthy/primary samples. In our study, DEM analysis of ovarian carcinoma and healthy subjects was performed using R Software to transform and normalize all transcriptomic data along with packages from Bioconductor. Results: We identified miRNA and its associated hub genes from the samples of ovarian cancer. We discovered the top five upregulated miRNAs (hsa-miR-130b-3p, hsa-miR-18a-5p, hsa-miR-182-5p, hsa-miR-187-3p, and hsa-miR-378a-3p) and the top five downregulated miRNAs (hsa-miR-501-3p, hsa-miR-4324, hsa-miR-500a-3p, hsa-miR-1271-5p, and hsa-miR-660-5p) from the network and their associated genes, which include seven common genes (SCN2A, BCL2, MAF, ZNF532, CADM1, ELAVL2, and ESRRG) that were considered hub genes for the downregulated network. Similarly, for upregulated miRNAs we found two hub genes (PRKACB and TAOK1).

3.
J Ovarian Res ; 15(1): 72, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715825

RESUMO

BACKGROUND: Among many gynecological malignancies ovarian cancer is the most prominent and leading cause of female mortality worldwide. Despite extensive research, the underlying cause of disease progression and pathology is still unknown. In the progression of ovarian cancer different non-coding RNAs have been recognized as important regulators. The biology of ovarian cancer which includes cancer initiation, progression, and dissemination is found to be regulated by different ncRNA. Clinically ncRNA shows high prognostic and diagnostic importance. RESULTS: In this review, we prioritize the role of different non-coding RNA and their perspective in diagnosis as potential biomarkers in the case of ovarian cancer. Summary of some of the few miRNAs involved in epithelial ovarian cancer their expression and clinical features are being provided in the table. Also, in cancer cell proliferation, apoptosis, invasion, and migration abnormal expression of piRNAs are emerging as a crucial regulator hence the role of few piRNAs is being given. Both tRFs and tiRNAs play important roles in tumorigenesis and are promising diagnostic biomarkers and therapeutic targets for cancer. lncRNA has shown a leading role in malignant transformation and potential therapeutic value in ovarian cancer therapy. CONCLUSIONS: Hence in this review we demonstrated the role of different ncRNA that play an important role in serving strong potential as a therapeutic approach for the treatment of ovarian cancer.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Epitelial do Ovário/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...