Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 13(1): 3753, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798724

RESUMO

The biomaterial with the highest known tensile strength is a unique composite of chitin and goethite (α-FeO(OH)) present in teeth from the Common Limpet (Patella vulgata). A biomimetic based on limpet tooth, with corresponding high-performance mechanical properties is highly desirable. Here we report on the replication of limpet tooth developmental processes ex vivo, where isolated limpet tissue and cells in culture generate new biomimetic structures. Transcriptomic analysis of each developmental stage of the radula, the organ from which limpet teeth originate, identifies sequential changes in expression of genes related to chitin and iron processing. We quantify iron and chitin metabolic processes in the radula and grow isolated radula cells in vitro. Bioinspired material can be developed with electrospun chitin mineralised by conditioned media from cultured radula cells. Our results inform molecular processes behind the generation of limpet tooth and establish a platform for development of a novel biomimetic with comparable properties.


Assuntos
Gastrópodes , Dente , Animais , Materiais Biocompatíveis , Biomimética , Quitina/química , Ferro
3.
ACS Biomater Sci Eng ; 5(5): 2543-2554, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33405760

RESUMO

Osteoregenerative biomaterials for the treatment of bone defects are under much development, with the aim of favoring osteointegration up to complete bone regeneration. A detailed investigation of bone-biomaterial integration is vital to understand and predict the ability of such materials to promote bone formation, preventing further bone damage and supporting load-bearing regions. This study aims to characterize the ex vivo micromechanics and microdamage evolution of bone-biomaterial systems at the tissue level, combining high-resolution synchrotron microcomputed tomography, in situ mechanics and digital volume correlation. Results showed that the main microfailure events were localized close to or within the newly formed bone tissue, in proximity to the bone-biomaterial interface. The apparent nominal compressive load applied to the composite structures resulted in a complex loading scenario, mainly due to the higher heterogeneity but also to the different biomaterial degradation mechanisms. The full-field strain distribution allowed characterization of microdamage initiation and progression. The findings reported in this study provide a deeper insight into bone-biomaterial integration and micromechanics in relation to the osteoregeneration achieved in vivo for a variety of biomaterials. This could ultimately be used to improve bone tissue regeneration strategies.

4.
J Mech Behav Biomed Mater ; 88: 109-119, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30165258

RESUMO

The use of synchrotron radiation micro-computed tomography (SR-microCT) is becoming increasingly popular for studying the relationship between microstructure and bone mechanics subjected to in situ mechanical testing. However, it is well known that the effect of SR X-ray radiation can considerably alter the mechanical properties of bone tissue. Digital volume correlation (DVC) has been extensively used to compute full-field strain distributions in bone specimens subjected to step-wise mechanical loading, but tissue damage from sequential SR-microCT scans has not been previously addressed. Therefore, the aim of this study is to examine the influence of SR irradiation-induced microdamage on the apparent elastic properties of trabecular bone using DVC applied to in situ SR-microCT tomograms obtained with different exposure times. Results showed how DVC was able to identify high local strain levels (> 10,000 µÎµ) corresponding to visible microcracks at high irradiation doses (~ 230 kGy), despite the apparent elastic properties remained unaltered. Microcracks were not detected and bone plasticity was preserved for low irradiation doses (~ 33 kGy), although image quality and consequently, DVC performance were reduced. DVC results suggested some local deterioration of tissue that might have resulted from mechanical strain concentration further enhanced by some level of local irradiation even for low accumulated dose.


Assuntos
Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/efeitos da radiação , Teste de Materiais , Fenômenos Mecânicos/efeitos da radiação , Síncrotrons , Microtomografia por Raio-X/efeitos adversos , Animais , Fenômenos Biomecânicos/efeitos da radiação , Ovinos
5.
J Orthop Res ; 36(3): 979-986, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28851105

RESUMO

Histology and backscatter scanning electron microscopy (bSEM) are the current gold standard methods for quantifying bone-implant contact (BIC), but are inherently destructive. Microcomputed tomography (µCT) is a non-destructive alternative, but attempts to validate µCT-based assessment of BIC in animal models have produced conflicting results. We previously showed in a rat model using a 1.5 mm diameter titanium implant that the extent of the metal-induced artefact precluded accurate measurement of bone sufficiently close to the interface to assess BIC. Recently introduced commercial laboratory µCT scanners have smaller voxels and improved imaging capabilities, possibly overcoming this limitation. The goals of the present study were to establish an approach for optimizing µCT imaging parameters and to validate µCT-based assessment of BIC. In an empirical parametric study using a 1.5 mm diameter titanium implant, we determined 90 kVp, 88 µA, 1.5 µm isotropic voxel size, 1600 projections/180°, and 750 ms integration time to be optimal. Using specimens from an in vivo rat experiment, we found significant correlations between bSEM and µCT for BIC with the manufacturer's automated analysis routine (r = 0.716, p = 0.003) or a line-intercept method (r = 0.797, p = 0.010). Thus, this newer generation scanner's improved imaging capability reduced the extent of the metal-induced artefact zone enough to permit assessment of BIC. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:979-986, 2018.


Assuntos
Osso e Ossos/diagnóstico por imagem , Próteses e Implantes , Microtomografia por Raio-X/métodos , Animais , Titânio
6.
Langmuir ; 33(43): 12072-12079, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28980814

RESUMO

Understanding the penetration of liquids within textile fibers is critical for the development of next-generation smart textiles. Despite substantial research on liquid penetration in the plane of the textile, little is known about how the liquid penetrates in the thickness direction. Here we report a time-resolved high-resolution X-ray measurement of the motion of the liquid-air interface within a single layer textile, as the liquid is transported across the textile thickness following the deposition of a droplet. The measurement of the time-dependent position of the liquid meniscus is made possible by the use of ultrahigh viscosity liquids (dynamic viscosity from 105 to 2.5 × 106 times larger than water). This approach enables imaging due to the slow penetration kinetics. Imaging results suggest a three-stage penetration process with each stage being associated with one of the three types of capillary channels existing in the textile geometry, providing insights into the effect of the textile structure on the path of the three-dimensional liquid meniscus. One dimensional kinetics studies show that our data for the transplanar penetration depth ΔxL vs time do not conform to a power law, and that the measured rate of penetration for long times is smaller than that predicted by Lucas-Washburn kinetics, challenging commonly held assumptions regarding the validity of power laws when applied to relatively thin textiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...