Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 168: 107476, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36067553

RESUMO

Human biomonitoring (HBM) is a crucial approach for exposure assessment, as emphasised in the European Commission's Chemicals Strategy for Sustainability (CSS). HBM can help to improve chemical policies in five major key areas: (1) assessing internal and aggregate exposure in different target populations; 2) assessing exposure to chemicals across life stages; (3) assessing combined exposure to multiple chemicals (mixtures); (4) bridging regulatory silos on aggregate exposure; and (5) enhancing the effectiveness of risk management measures. In this strategy paper we propose a vision and a strategy for the use of HBM in chemical regulations and public health policy in Europe and beyond. We outline six strategic objectives and a roadmap to further strengthen HBM approaches and increase their implementation in the regulatory risk assessment of chemicals to enhance our understanding of exposure and health impacts, enabling timely and targeted policy interventions and risk management. These strategic objectives are: 1) further development of sampling strategies and sample preparation; 2) further development of chemical-analytical HBM methods; 3) improving harmonisation throughout the HBM research life cycle; 4) further development of quality control / quality assurance throughout the HBM research life cycle; 5) obtain sustained funding and reinforcement by legislation; and 6) extend target-specific communication with scientists, policymakers, citizens and other stakeholders. HBM approaches are essential in risk assessment to address scientific, regulatory and societal challenges. HBM requires full and strong support from the scientific and regulatory domain to reach its full potential in public and occupational health assessment and in regulatory decision-making.

2.
Environ Int ; 159: 107033, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34979407

RESUMO

Three steroidal estrogens, 17α-ethinylestradiol (EE2), 17ß-estradiol (E2), estrone (E1), and the non-steroidal anti-inflammatory drug (NSAID), diclofenac have been included in the first Watch List of the Water Framework Directive (WFD, EU Directive 2000/60/EC, EU Implementing Decision 2015/495). This triggered the need for more EU-wide surface water monitoring data on these micropollutants, before they can be considered for inclusion in the list of priority substances regularly monitored in aquatic ecosystems. The revision of the priority substance list of the WFD offers the opportunity to incorporate more holistic bioanalytical approaches, such as effect-based monitoring, alongside single substance chemical monitoring. Effect-based methods (EBMs) are able to measure total biological activities (e.g., estrogenic activity or cyxlooxygenase [COX]-inhibition) of specific group of substances (such as estrogens and NSAIDs) in the aquatic environment at low concentrations (pg/L). This makes them potential tools for a cost-effective and ecotoxicologically comprehensive water quality assessment. In parallel, the use of such methods could build a bridge from chemical status assessments towards ecological status assessments by adressing mixture effects for relevant modes of action. Our study aimed to assess the suitability of implementing EBMs in the WFD, by conducting a large-scale sampling and analysis campaign of more than 70 surface waters across Europe. This resulted in the generation of high-quality chemical and effect-based monitoring data for the selected Watch List substances. Overall, water samples contained low estrogenicity (0.01-1.3 ng E2-Equivalent/L) and a range of COX-inhibition activity similar to previously reported levels (12-1600 ng Diclofenac-Equivalent/L). Comparison between effect-based and conventional analytical chemical methods showed that the chemical analytical approach for steroidal estrogens resulted in more (76%) non-quantifiable data, i.e., concentrations were below detection limits, compared to the EBMs (28%). These results demonstrate the excellent and sensitive screening capability of EBMs.


Assuntos
Diclofenaco , Poluentes Químicos da Água , Diclofenaco/toxicidade , Ecossistema , Monitoramento Ambiental/métodos , Estradiol/análise , Estrogênios/análise , Poluentes Químicos da Água/análise
3.
Int J Hyg Environ Health ; 238: 113826, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34583227

RESUMO

Data generated by the rapidly evolving human biomonitoring (HBM) programmes are providing invaluable opportunities to support and advance regulatory risk assessment and management of chemicals in occupational and environmental health domains. However, heterogeneity across studies, in terms of design, terminology, biomarker nomenclature, and data formats, limits our capacity to compare and integrate data sets retrospectively (reuse). Registration of HBM studies is common for clinical trials; however, the study designs and resulting data collections cannot be traced easily. We argue that an HBM Global Registry Framework (HBM GRF) could be the solution to several of challenges hampering the (re)use of HBM (meta)data. The aim is to develop a global, host-independent HBM registry framework based on the use of harmonised open-access protocol templates from designing, undertaking of an HBM study to the use and possible reuse of the resulting HBM (meta)data. This framework should apply FAIR (Findable, Accessible, Interoperable and Reusable) principles as a core data management strategy to enable the (re)use of HBM (meta)data to its full potential through the data value chain. Moreover, we believe that implementation of FAIR principles is a fundamental enabler for digital transformation within environmental health. The HBM GRF would encompass internationally harmonised and agreed open access templates for HBM study protocols, structured web-based functionalities to deposit, find, and access harmonised protocols of HBM studies. Registration of HBM studies using the HBM GRF is anticipated to increase FAIRness of the resulting (meta)data. It is also considered that harmonisation of existing data sets could be performed retrospectively. As a consequence, data wrangling activities to make data ready for analysis will be minimised. In addition, this framework would enable the HBM (inter)national community to trace new HBM studies already in the planning phase and their results once finalised. The HBM GRF could also serve as a platform enhancing communication between scientists, risk assessors, and risk managers/policy makers. The planned European Partnership for the Assessment of Risk from Chemicals (PARC) work along these lines, based on the experience obtained in previous joint European initiatives. Therefore, PARC could very well bring a first demonstration of first essential functionalities within the development of the HBM GRF.


Assuntos
Monitoramento Biológico , Exposição Ambiental , Exposição Ambiental/análise , Monitoramento Ambiental , Humanos , Sistema de Registros , Estudos Retrospectivos
4.
Environ Int ; 146: 106257, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395925

RESUMO

Effect biomarkers can be used to elucidate relationships between exposure to environmental chemicals and their mixtures with associated health outcomes, but they are often underused, as underlying biological mechanisms are not understood. We aim to provide an overview of available effect biomarkers for monitoring chemical exposures in the general and occupational populations, and highlight their potential in monitoring humans exposed to chemical mixtures. We also discuss the role of the adverse outcome pathway (AOP) framework and physiologically based kinetic and dynamic (PBK/D) modelling to strengthen the understanding of the biological mechanism of effect biomarkers, and in particular for use in regulatory risk assessments. An interdisciplinary network of experts from the European chapter of the International Society for Exposure Science (ISES Europe) and the Organization for Economic Co-operation and Development (OECD) Occupational Biomonitoring activity of Working Parties of Hazard and Exposure Assessment group worked together to map the conventional framework of biomarkers and provided recommendations for their systematic use. We summarized the key aspects of this work here, and discussed these in three parts. Part I, we inventory available effect biomarkers and promising new biomarkers for the general population based on the H2020 Human Biomonitoring for Europe (HBM4EU) initiative. Part II, we provide an overview AOP and PBK/D modelling use that improved the selection and interpretation of effect biomarkers. Part III, we describe the collected expertise from the OECD Occupational Biomonitoring subtask effect biomarkers in prioritizing relevant mode of actions (MoAs) and suitable effect biomarkers. Furthermore, we propose a tiered risk assessment approach for occupational biomonitoring. Several effect biomarkers, especially for use in occupational settings, are validated. They offer a direct assessment of the overall health risks associated with exposure to chemicals, chemical mixtures and their transformation products. Promising novel effect biomarkers are emerging for biomonitoring of the general population. Efforts are being dedicated to prioritizing molecular and biochemical effect biomarkers that can provide a causal link in exposure-health outcome associations. This mechanistic approach has great potential in improving human health risk assessment. New techniques such as in silico methods (e.g. QSAR, PBK/D modelling) as well as 'omics data will aid this process. Our multidisciplinary review represents a starting point for enhancing the identification of effect biomarkers and their mechanistic pathways following the AOP framework. This may help in prioritizing the effect biomarker implementation as well as defining threshold limits for chemical mixtures in a more structured way. Several ex vivo biomarkers have been proposed to evaluate combined effects including genotoxicity and xeno-estrogenicity. There is a regulatory need to derive effect-based trigger values using the increasing mechanistic knowledge coming from the AOP framework to address adverse health effects due to exposure to chemical mixtures. Such a mechanistic strategy would reduce the fragmentation observed in different regulations. It could also stimulate a harmonized use of effect biomarkers in a more comparable way, in particular for risk assessments to chemical mixtures.


Assuntos
Monitoramento Biológico , Exposição Ambiental , Biomarcadores , Exposição Ambiental/análise , Monitoramento Ambiental , Europa (Continente) , Humanos , Medição de Risco
5.
Artigo em Inglês | MEDLINE | ID: mdl-32823696

RESUMO

Recent advances in analytical chemistry have allowed a greater possibility of using quantitative approaches for measuring human exposure to chemicals. One of these approaches is biomonitoring (BM), which provides unequivocal evidence that both exposure and uptake of a chemical have taken place. BM has been a longstanding practice in occupational health for several reasons. BM integrates exposure from all routes. It can help identify unintentional and unexpected exposures and assess the effectiveness of existing risk-management measures. BM also provides relevant information to support policy development by delivering better evidence of workers' exposure to chemical substances, even within the framework of the present regulations. Thus, BM can allow for both the evaluation of the impact of regulation and identification of further needs for new or improved regulation. However, despite all these well-recognized advantages, BM is currently an underused exposure assessment tool. This paper provides an overview of the key aspects to be considered when using BM in the context of occupational health interventions. Additionally, this paper describes the potential of BM as an exposure assessment tool, distinguishing the role of BM in exposure assessment and health surveillance and clarifies ethical and communication aspects to guarantee that general data protection regulations are followed. In addition, actions and research needs are identified (particularly with reference to the European situation), which aim to encourage the increased use of BM as an exposure assessment tool.


Assuntos
Monitoramento Biológico , Exposição Ocupacional , Saúde Ocupacional , Exposição Ambiental/análise , Monitoramento Ambiental , Humanos , Exposição Ocupacional/análise , Medição de Risco , Gestão de Riscos
6.
Integr Environ Assess Manag ; 15(6): 948-960, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31310040

RESUMO

An environmental quality standard (EQS) is a threshold value applied in regulatory monitoring for retrospective environmental risk assessment. However, an EQS may vary with time and between countries with shared water bodies, challenging coherent risk management. This study aimed to analyze the underlying reasons for changes in EQS values following a revision of previously derived EQSs for 62 substances. Relevant data were retrieved from publicly accessible databases, available literature, registration dossiers, and, in some cases, provided by manufacturers. Ecotoxicological data were assessed regarding reliability and relevance. As in previous studies, EQS derivation followed the European Union guideline. Overall, 61 annual average EQSs (AA-EQS) and 58 maximum acceptable concentration EQSs (MAC-EQS) were derived. Size and completeness of data sets generally increased due to the revision. AA-EQSs increased in 13 cases and decreased in 21 cases. MAC-EQSs increased in 22 cases and decreased in 11 cases. Most EQSs were derived using the deterministic assessment factor (AF) method. The number of substances for which EQSs were derived probabilistically by reference to the species sensitivity distribution (SSD) method increased from 2 to 5 AA-EQSs and from 6 to 11 MAC-EQSs. For AA-EQS derivation, AFs were reduced in 14 cases and increased in 6 cases. For MAC-EQS derivation, AFs were reduced in 9 cases and increased in 2 cases. Results demonstrate that the revisions did not generally lead to either lower or higher EQSs. The majority of EQSs (>93%) changed less than 10-fold. Clearly, EQSs based on small or incomplete data sets with large AFs were more prone to considerable changes in their numeric values when revised than EQSs based on SSDs. Thus, revision can reduce uncertainty and increase robustness of an EQS. In this study, however, available data continued to be insufficient to construct SSDs for the majority of substances. This was mostly due to a lack of reliable data. Integr Environ Assess Manag 2019;00:1-13. © 2019 SETAC.


Assuntos
Monitoramento Ambiental/normas , Ecotoxicologia/métodos , União Europeia , Estudos Retrospectivos , Medição de Risco/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...