Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 9(1): 88-99, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20492547

RESUMO

The Arabidopsis gene AVP1 encodes a vacuolar pyrophosphatase that functions as a proton pump on the vacuolar membrane. Overexpression of AVP1 in Arabidopsis, tomato and rice enhances plant performance under salt and drought stress conditions, because up-regulation of the type I H+-PPase from Arabidopsis may result in a higher proton electrochemical gradient, which facilitates enhanced sequestering of ions and sugars into the vacuole, reducing water potential and resulting in increased drought- and salt tolerance when compared to wild-type plants. Furthermore, overexpression of AVP1 stimulates auxin transport in the root system and leads to larger root systems, which helps transgenic plants absorb water more efficiently under drought conditions. Using the same approach, AVP1-expressing cotton plants were created and tested for their performance under high-salt and reduced irrigation conditions. The AVP1-expressing cotton plants showed more vigorous growth than wild-type plants in the presence of 200 mM NaCl under hydroponic growth conditions. The soil-grown AVP1-expressing cotton plants also displayed significantly improved tolerance to both drought and salt stresses in greenhouse conditions. Furthermore, the fibre yield of AVP1-expressing cotton plants is at least 20% higher than that of wild-type plants under dry-land conditions in the field. This research indicates that AVP1 has the potential to be used for improving crop's drought- and salt tolerance in areas where water and salinity are limiting factors for agricultural productivity.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Gossypium/genética , Gossypium/fisiologia , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/fisiologia , Plantas Geneticamente Modificadas , Arabidopsis/genética , Fibra de Algodão , Secas , Regulação da Expressão Gênica de Plantas , Tolerância ao Sal , Estresse Fisiológico , Vacúolos/metabolismo
2.
Plant J ; 49(2): 228-37, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17241447

RESUMO

Animal CHIP proteins are chaperone-dependent E3 ubiquitin ligases that physically interact with Hsp70, Hsp90 and proteasome, promoting degradation of a selective group of non-native or damaged proteins in animal cells. The plant CHIP-like protein, AtCHIP, also plays important roles in protein turnover metabolism. AtCHIP interacts with a proteolytic subunit, ClpP4, of the chloroplast Clp protease in vivo, and ubiquitylates ClpP4 in vitro. The steady-state level of ClpP4 is reduced in AtCHIP-overexpressing plants under high-intensity light conditions, suggesting that AtCHIP targets ClpP4 for degradation and thereby regulates the Clp proteolytic activity in chloroplasts under certain stress conditions. Overexpression of ClpP4 in Arabidopsis leads to chlorotic phenotypes in transgenic plants, and chloroplast structures in the chlorotic tissues of ClpP4-overexpressing plants are abnormal and largely devoid of thylakoid membranes, suggesting that ClpP4 plays a critical role in chloroplast structure and function. As AtCHIP is a cytosolic protein that has been shown to play an important role in regulating an essential chloroplast protease, this research provides new insights into the regulatory networks controlling protein turnover catabolism in chloroplasts.


Assuntos
Cloroplastos/metabolismo , Endopeptidase Clp/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/fisiologia , Cloroplastos/ultraestrutura , Endopeptidase Clp/genética , Endopeptidase Clp/fisiologia , Regulação da Expressão Gênica de Plantas , Microscopia Eletrônica de Transmissão , Plantas Geneticamente Modificadas , Ligação Proteica
3.
J Exp Bot ; 57(12): 3033-42, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16873450

RESUMO

Ascorbate peroxidase (APX) exists as several isoforms that are found in various compartments in plant cells. The cytosolic and chloroplast APXs appear to play important roles in antioxidation metabolism in plant cells, yet the function of peroxisomal APX is not well studied. In this study, the localization of a putative peroxisomal membrane-bound ascorbate peroxidase, APX3 from Arabidopsis, was confirmed by studying the green fluorescent protein (GFP)-APX3 fusion protein in transgenic plants. GFP-APX3 was found to co-localize with a reporter protein that was targeted to peroxisomes by the peroxisomal targeting signal 1. The function of APX3 in Arabidopsis was investigated by analysing an APX3 knockout mutant under normal and several stress conditions. It was found that loss of function in APX3 does not affect Arabidopsis growth and development, suggesting that APX3 may not be an important antioxidant enzyme in Arabidopsis, at least under the conditions that were tested, or the function of APX3 could be compensated by other antioxidant enzymes in plant cells.


Assuntos
Antioxidantes/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Membrana/fisiologia , Peroxidases/fisiologia , Peroxissomos/enzimologia , Sequência de Aminoácidos , Antioxidantes/química , Antioxidantes/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ascorbato Peroxidases , Proteínas de Cloroplastos , Temperatura Alta , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Estresse Oxidativo , Peroxidases/química , Peroxidases/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...