Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 16(1): 150, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794424

RESUMO

BACKGROUND: Penicillium funiculosum NCIM1228 is a filamentous fungus that was identified in our laboratory to have high cellulolytic activity. Analysis of its secretome suggested that it responds to different carbon substrates by secreting specific enzymes capable of digesting those substrates. This phenomenon indicated the presence of a regulatory system guiding the expression of these hydrolyzing enzymes. Since transcription factors (TFs) are the key players in regulating the expression of enzymes, this study aimed first to identify the complete repertoire of Carbohydrate Active Enzymes (CAZymes) and TFs coded in its genome. The regulation of CAZymes was then analysed by studying the expression pattern of these CAZymes and TFs in different carbon substrates-Avicel (cellulosic substrate), wheat bran (WB; hemicellulosic substrate), Avicel + wheat bran, pre-treated wheat straw (a potential substrate for lignocellulosic ethanol), and glucose (control). RESULTS: The P. funiculosum NCIM1228 genome was sequenced, and 10,739 genes were identified in its genome. These genes included a total of 298 CAZymes and 451 TF coding genes. A distinct expression pattern of the CAZymes was observed in different carbon substrates tested. Core cellulose hydrolyzing enzymes were highly expressed in the presence of Avicel, while pre-treated wheat straw and Avicel + wheat bran induced a mixture of CAZymes because of their heterogeneous nature. Wheat bran mainly induced hemicellulases, and the least number of CAZymes were expressed in glucose. TFs also exhibited distinct expression patterns in each of the carbon substrates. Though most of these TFs have not been functionally characterized before, homologs of NosA, Fcr1, and ATF21, which have been known to be involved in fruiting body development, protein secretion and stress response, were identified. CONCLUSIONS: Overall, the P. funiculosum NCIM1228 genome was sequenced, and the CAZymes and TFs present in its genome were annotated. The expression of the CAZymes and TFs in response to various polymeric sugars present in the lignocellulosic biomass was identified. This work thus provides a comprehensive mapping of transcription factors (TFs) involved in regulating the production of biomass hydrolyzing enzymes.

2.
Biotechnol Biofuels ; 14(1): 31, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33494787

RESUMO

BACKGROUND: Penicillium funiculosum NCIM1228 is a non-model filamentous fungus that produces high-quality secretome for lignocellulosic biomass saccharification. Despite having desirable traits to be an industrial workhorse, P. funiculosum has been underestimated due to a lack of reliable genetic engineering tools. Tolerance towards common fungal antibiotics had been one of the major hindrances towards development of reliable transformation tools against the non-model fungi. In this study, we sought to understand the mechanism of drug tolerance of P. funiculosum and the provision to counter it. We then attempted to identify a robust method of transformation for genome engineering of this fungus. RESULTS: Penicillium funiculosum showed a high degree of drug tolerance towards hygromycin, zeocin and nourseothricin, thereby hindering their use as selectable markers to obtain recombinant transformants. Transcriptome analysis suggested a high level expression of efflux pumps belonging to ABC and MFS family, especially when complex carbon was used in growth media. Antibiotic selection medium was optimized using a combination of efflux pump inhibitors and suitable carbon source to prevent drug tolerability. Protoplast-mediated and Agrobacterium-mediated transformation were attempted for identifying efficiencies of linear and circular DNA in performing genetic manipulation. After finding Ti-plasmid-based Agrobacterium-mediated transformation more suitable for P. funiculosum, we improvised the system to achieve random and homologous recombination-based gene integration and deletion, respectively. We found single-copy random integration of the T-DNA cassette and could achieve 60% efficiency in homologous recombination-based gene deletions. A faster, plasmid-free, and protoplast-based CRISPR/Cas9 gene-editing system was also developed for P. funiculosum. To show its utility in P. funiculosum, we deleted the gene coding for the most abundant cellulase Cellobiohydrolase I (CBH1) using a pair of sgRNA directed towards both ends of cbh1 open reading frame. Functional analysis of ∆cbh1 strain revealed its essentiality for the cellulolytic trait of P. funiculosum secretome. CONCLUSIONS: In this study, we addressed drug tolerability of P. funiculosum and developed an optimized toolkit for its genome modification. Hence, we set the foundation for gene function analysis and further genetic improvements of P. funiculosum using both traditional and advanced methods.

3.
Sci Rep ; 9(1): 6091, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988376

RESUMO

Paenibacillus polymyxa A18 was isolated from termite gut and was identified as a potential cellulase and hemicellulase producer in our previous study. Considering that members belonging to genus Paenibacillus are mostly free-living in soil, we investigated here the essential genetic features that helped P. polymyxa A18 to survive in gut environment. Genome sequencing and analysis identified 4608 coding sequences along with several elements of horizontal gene transfer, insertion sequences, transposases and integrated phages, which add to its genetic diversity. Many genes coding for carbohydrate-active enzymes, including the enzymes responsible for woody biomass hydrolysis in termite gut, were identified in P. polymyxa A18 genome. Further, a series of proteins conferring resistance to 11 antibiotics and responsible for production of 4 antibiotics were also found to be encoded, indicating selective advantage for growth and colonization in the gut environment. To further identify genomic regions unique to this strain, a BLAST-based comparative analysis with the sequenced genomes of 47 members belonging to genus Paenibacillus was carried out. Unique regions coding for nucleic acid modifying enzymes like CRISPR/Cas and Type I Restriction-Modification enzymes were identified in P. polymyxa A18 genome suggesting the presence of defense mechanism to combat viral infections in the gut. In addition, genes responsible for the formation of biofilms, such as Type IV pili and adhesins, which might be assisting P. polymyxa A18 in colonizing the gut were also identified in its genome. In situ colonization experiment further confirmed the ability of P. polymyxa A18 to colonize the gut of termite.


Assuntos
Adaptação Fisiológica/genética , Microbioma Gastrointestinal/fisiologia , Genoma Bacteriano/genética , Isópteros/microbiologia , Paenibacillus polymyxa/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Celulase/metabolismo , Enzimas/genética , Enzimas/metabolismo , Genômica , Glicosídeo Hidrolases/metabolismo
4.
J Proteomics ; 179: 150-160, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29597011

RESUMO

Filamentous fungi respond to the need to secure utilisable carbon from their growth milieu by secreting unique extracellular proteins depending upon the types of polymeric substrates. We have here profiled the variations in the secretome pattern of a non-model hypercellulolytic fungus - Penicillium funiculosum, grown in minimal media containing four different polymeric cellulase inducers, i.e., Avicel, wheat bran, ammonium-pretreated wheat straw and Avicel & wheat bran, and glucose over its early and late log phases of growth. Of the 137 secreted proteins validated at 1% FDR, we identified the quantified proteins in three clusters as early, persistently or lately expressed. The type of carbon substrate present in the culture media significantly affected the levels of cellulolytic enzymes expression by the fungus. The top abundant proteins quantified in the secretome for Avicel and wheat bran were cellobiohydrolaseI [GH7-CBM1], cellobiohydrolaseII [GH6-CBM1], ß-glucosidase [GH3], arabinofuranosidase [GH51] and ß-xylosidase [GH3], with bicupin being highest in case of wheat straw. Our results further suggested that the fungus secreted the extracellular proteins in waves, such that the initial responders act to hydrolyse the composite substrates in the culture environment before the second wave of proteins which tend to be more tailored to the specific substrate in the cultivating media. BIOLOGICAL SIGNIFICANCE: In this article, we have comprehensively examined the dynamics of the secretome of a non-model hypercellulolytic fungus produced in response to model and composite cellulase inducers. Our study has provided additional insights into how the fungus enzyme machinery responds to the presence of different polymeric cellulase inducers over the two different growth phases (early growth and late growth phase). The comprehensive typing and quantification of the different proteins present in the secretomes of the cellulolytic fungal strains in response to diverse nutrient sources hold many prospects in understanding the fungus unique enzyme machinery and dynamics for the downstream biotechnological applications.


Assuntos
Celulose/farmacologia , Proteínas Fúngicas/biossíntese , Glucose/farmacologia , Penicillium/enzimologia , beta-Glucosidase/química , Penicillium/genética
5.
Sci Rep ; 7(1): 3700, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623337

RESUMO

Cellulolytic enzymes capable of hydrolyzing plant biomass are secreted by microbial cells specifically in response to the carbon substrate present in the environment. These enzymes consist of a catalytic domain, generally appended to one or more non-catalytic Carbohydrate Binding Module (CBM), which enhances their activity towards recalcitrant biomass. In the present study, the genome of a cellulolytic microbe Paenibacillus polymyxa A18 was annotated for the presence of CBMs and analyzed their expression in response to the plant biomass and model polysaccharides Avicel, CMC and xylan using quantitative PCR. A gene that encodes X2-CBM3 was found to be maximally induced in response to the biomass and crystalline substrate Avicel. Association of X2-CBM3 with xyloglucanase and endoglucanase led to up to 4.6-fold increase in activity towards insoluble substrates. In the substrate binding study, module X2 showed a higher affinity towards biomass and phosphoric acid swollen cellulose, whereas CBM3 showed a higher affinity towards Avicel. Further structural modeling of X2 also indicated its potential role in substrate binding. Our findings highlighted the role of module X2 along with CBM3 in assisting the enzyme catalysis of agricultural residue and paved the way to engineer glycoside hydrolases for superior activity.


Assuntos
Biomassa , Metabolismo dos Carboidratos , Carboidratos/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Plantas/metabolismo , Catálise , Glicosídeos/metabolismo , Hidrólise , Modelos Moleculares , Conformação Molecular , Plantas/química , Ligação Proteica , Solubilidade , Relação Estrutura-Atividade
6.
J Proteome Res ; 14(10): 4342-58, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26288988

RESUMO

The quest for cheaper and better enzymes needed for the efficient hydrolysis of lignocellulosic biomass has placed filamentous fungi in the limelight for bioprospecting research. In our search for efficient biomass degraders, we identified a strain of Penicillium funiculosum whose secretome demonstrates high saccharification capabilities. Our probe into the secretome of the fungus through qualitative and label-free quantitative mass spectrometry based proteomics studies revealed a high abundance of inducible CAZymes and several nonhydrolytic accessory proteins. The preferential association of these proteins and the attending differential biomass hydrolysis gives an insight into their interactions and clues about possible roles of novel hydrolytic and nonhydrolytic proteins in the synergistic deconstruction of lignocellulosic biomass. Our study thus provides the first comprehensive insight into the repertoire of proteins present in a high-performing secretome of a hypercellulolytic Penicillium funiculosum, their relative abundance in the secretome, and the interaction dynamics of the various protein groups in the secretome. The gleanings from the stoichiometry of these interactions hold a prospect as templates in the design of cost-effective synthetic cocktails for the optimal hydrolysis of biomass.


Assuntos
Celulases/isolamento & purificação , Proteínas Fúngicas/isolamento & purificação , Lignina/química , Penicillium/enzimologia , Biomassa , Celulases/genética , Celulases/metabolismo , Ensaios Enzimáticos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Hidrólise , Espectrometria de Massas , Anotação de Sequência Molecular , Penicillium/genética , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...