Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Imaging Inform Med ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478187

RESUMO

Breast cancer holds the highest diagnosis rate among female tumors and is the leading cause of death among women. Quantitative analysis of radiological images shows the potential to address several medical challenges, including the early detection and classification of breast tumors. In the P.I.N.K study, 66 women were enrolled. Their paired Automated Breast Volume Scanner (ABVS) and Digital Breast Tomosynthesis (DBT) images, annotated with cancerous lesions, populated the first ABVS+DBT dataset. This enabled not only a radiomic analysis for the malignant vs. benign breast cancer classification, but also the comparison of the two modalities. For this purpose, the models were trained using a leave-one-out nested cross-validation strategy combined with a proper threshold selection approach. This approach provides statistically significant results even with medium-sized data sets. Additionally it provides distributional variables of importance, thus identifying the most informative radiomic features. The analysis proved the predictive capacity of radiomic models even using a reduced number of features. Indeed, from tomography we achieved AUC-ROC 89.9 % using 19 features and 92.1 % using 7 of them; while from ABVS we attained an AUC-ROC of 72.3 % using 22 features and 85.8 % using only 3 features. Although the predictive power of DBT outperforms ABVS, when comparing the predictions at the patient level, only 8.7% of lesions are misclassified by both methods, suggesting a partial complementarity. Notably, promising results (AUC-ROC ABVS-DBT 71.8 % - 74.1 % ) were achieved using non-geometric features, thus opening the way to the integration of virtual biopsy in medical routine.

2.
Sci Rep ; 13(1): 7282, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142690

RESUMO

In the last decade, Raman Spectroscopy is establishing itself as a highly promising technique for the classification of tumour tissues as it allows to obtain the biochemical maps of the tissues under investigation, making it possible to observe changes among different tissues in terms of biochemical constituents (proteins, lipid structures, DNA, vitamins, and so on). In this paper, we aim to show that techniques emerging from the cross-fertilization of persistent homology and machine learning can support the classification of Raman spectra extracted from cancerous tissues for tumour grading. In more detail, topological features of Raman spectra and machine learning classifiers are trained in combination as an automatic classification pipeline in order to select the best-performing pair. The case study is the grading of chondrosarcoma in four classes: cross and leave-one-patient-out validations have been used to assess the classification accuracy of the method. The binary classification achieves a validation accuracy of 81% and a test accuracy of 90%. Moreover, the test dataset has been collected at a different time and with different equipment. Such results are achieved by a support vector classifier trained with the Betti Curve representation of the topological features extracted from the Raman spectra, and are excellent compared with the existing literature. The added value of such results is that the model for the prediction of the chondrosarcoma grading could easily be implemented in clinical practice, possibly integrated into the acquisition system.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Humanos , Análise Espectral Raman/métodos , Aprendizado de Máquina , Gradação de Tumores , Máquina de Vetores de Suporte
3.
Nutrients ; 14(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36558357

RESUMO

Studies in psychiatric populations have found a positive effect of Horticultural therapy (HCT) on reductions in stress levels. The main objective of the present pilot study was to evaluate the impact of the addition of HCT to conventional clinical treatment (Treatment as Usual, TaU) in a sample of six female adolescents with anorexia nervosa restricting type (AN-R), as compared to six AN-R patients, matched for sex and age, under TaU only. This is a prospective, non-profit, pilot study on patients with a previous diagnosis of AN-R and BMI < 16, recruited in 2020 in clinical settings. At enrolment (T0) and after treatment completion (TF), psychiatric assessment was performed. At T0, all the patients underwent: baseline electrocardiogram acquisition with a wearable chest strap for recording heart rate and its variability; skin conductance registration and thermal mapping of the individual's face. An olfactory identification test was administered both to evaluate the olfactory sensoriality and to assess the induced stress. One-way analyses of variance (ANOVAs) were performed to analyze modifications in clinical and physiological variables, considering time (T0, TF) as a within-subjects factor and group (experimental vs. control) as between-subjects factors. When the ANOVA was significant, post hoc analysis was performed by Paired Sample T-tests. Only in the HCT group, stress response levels, as measured by the biological parameters, improved over time. The body uneasiness level and the affective problem measures displayed a significant improvement in the HCT subjects. HCT seems to have a positive influence on stress levels in AN-R.


Assuntos
Anorexia Nervosa , Horticultura Terapêutica , Humanos , Feminino , Adolescente , Projetos Piloto , Estudos Prospectivos , Estresse Fisiológico
4.
Eur Radiol Exp ; 6(1): 53, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36344838

RESUMO

NAVIGATOR is an Italian regional project boosting precision medicine in oncology with the aim of making it more predictive, preventive, and personalised by advancing translational research based on quantitative imaging and integrative omics analyses. The project's goal is to develop an open imaging biobank for the collection and preservation of a large amount of standardised imaging multimodal datasets, including computed tomography, magnetic resonance imaging, and positron emission tomography data, together with the corresponding patient-related and omics-related relevant information extracted from regional healthcare services using an adapted privacy-preserving model. The project is based on an open-source imaging biobank and an open-science oriented virtual research environment (VRE). Available integrative omics and multi-imaging data of three use cases (prostate cancer, rectal cancer, and gastric cancer) will be collected. All data confined in NAVIGATOR (i.e., standard and novel imaging biomarkers, non-imaging data, health agency data) will be used to create a digital patient model, to support the reliable prediction of the disease phenotype and risk stratification. The VRE that relies on a well-established infrastructure, called D4Science.org, will further provide a multiset infrastructure for processing the integrative omics data, extracting specific radiomic signatures, and for identification and testing of novel imaging biomarkers through big data analytics and artificial intelligence.


Assuntos
Inteligência Artificial , Medicina de Precisão , Medicina de Precisão/métodos , Bancos de Espécimes Biológicos , Tomografia por Emissão de Pósitrons , Biomarcadores
5.
Int J Med Inform ; 165: 104823, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35763936

RESUMO

OBJECTIVE: Cardio-metabolic risk assessment in the general population is of paramount importance to reduce diseases burdened by high morbility and mortality. The present paper defines a strategy for out-of-hospital cardio-metabolic risk assessment, based on data acquired from contact-less sensors. METHODS: We employ Structural Equation Modeling to identify latent clinical variables of cardio-metabolic risk, related to anthropometric, glycolipidic and vascular function factors. Then, we define a set of sensor-based measurements that correlate with the clinical latent variables. RESULTS: Our measurements identify subjects with one or more risk factors in a population of 68 healthy volunteers from the EU-funded SEMEOTICONS project with accuracy 82.4%, sensitivity 82.5%, and specificity 82.1%. CONCLUSIONS: Our preliminary results strengthen the role of self-monitoring systems for cardio-metabolic risk prevention.


Assuntos
Doenças Cardiovasculares , Antropometria , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Humanos , Medição de Risco/métodos , Fatores de Risco
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 608-611, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891367

RESUMO

This study proposes long wave infrared technology as a contactless alternative to wearable devices for stress detection. To this aim, we studied the change in facial thermal distribution of 17 healthy subjects in response to different stressors (Stroop Test, Mental Arithmetic Test). During the experimental sessions the electrodermal activity (EDA) and the facial thermal response were simultaneously recorded from each subject. It is well known from the literature that EDA can be considered a reliable marker for the psychological state variation, therefore we used it as a reference signal to validate the thermal results. Statistical analysis was performed to evaluate significant differences in the thermal features between stress and non-stress conditions, as well as between stress and cognitive load. Our results are in line with the outcomes of previous studies and show significant differences in the temperature trends over time between stress and resting conditions. As a new result, we found that the mean temperature changes of some less studied facial regions, e.g., the right cheek, are able not only to significantly discriminate between resting and stressful conditions, but also allow to recognize the typology of stressors. This outcome not only directs future studies to consider the thermal patterns of less explored facial regions as possible correlates of mental states, but more importantly it suggests that different psychological states could potentially be discriminated in a contactless manner.


Assuntos
Resposta Galvânica da Pele , Dispositivos Eletrônicos Vestíveis , Cognição , Face , Humanos
7.
Front Oncol ; 11: 802964, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096605

RESUMO

Prostate cancer (PCa) is the most frequent male malignancy and the assessment of PCa aggressiveness, for which a biopsy is required, is fundamental for patient management. Currently, multiparametric (mp) MRI is strongly recommended before biopsy. Quantitative assessment of mpMRI might provide the radiologist with an objective and noninvasive tool for supporting the decision-making in clinical practice and decreasing intra- and inter-reader variability. In this view, high dimensional radiomics features and Machine Learning (ML) techniques, along with Deep Learning (DL) methods working on raw images directly, could assist the radiologist in the clinical workflow. The aim of this study was to develop and validate ML/DL frameworks on mpMRI data to characterize PCas according to their aggressiveness. We optimized several ML/DL frameworks on T2w, ADC and T2w+ADC data, using a patient-based nested validation scheme. The dataset was composed of 112 patients (132 peripheral lesions with Prostate Imaging Reporting and Data System (PI-RADS) score ≥ 3) acquired following both PI-RADS 2.0 and 2.1 guidelines. Firstly, ML/DL frameworks trained and validated on PI-RADS 2.0 data were tested on both PI-RADS 2.0 and 2.1 data. Then, we trained, validated and tested ML/DL frameworks on a multi PI-RADS dataset. We reported the performances in terms of Area Under the Receiver Operating curve (AUROC), specificity and sensitivity. The ML/DL frameworks trained on T2w data achieved the overall best performance. Notably, ML and DL frameworks trained and validated on PI-RADS 2.0 data obtained median AUROC values equal to 0.750 and 0.875, respectively, on unseen PI-RADS 2.0 test set. Similarly, ML/DL frameworks trained and validated on multi PI-RADS T2w data showed median AUROC values equal to 0.795 and 0.750, respectively, on unseen multi PI-RADS test set. Conversely, all the ML/DL frameworks trained and validated on PI-RADS 2.0 data, achieved AUROC values no better than the chance level when tested on PI-RADS 2.1 data. Both ML/DL techniques applied on mpMRI seem to be a valid aid in predicting PCa aggressiveness. In particular, ML/DL frameworks fed with T2w images data (objective, fast and non-invasive) show good performances and might support decision-making in patient diagnostic and therapeutic management, reducing intra- and inter-reader variability.

8.
Sensors (Basel) ; 19(13)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323927

RESUMO

The power transmission lines are the link between power plants and the points of consumption, through substations. Most importantly, the assessment of damaged aerial power lines and rusted conductors is of extreme importance for public safety; hence, power lines and associated components must be periodically inspected to ensure a continuous supply and to identify any fault and defect. To achieve these objectives, recently, Unmanned Aerial Vehicles (UAVs) have been widely used; in fact, they provide a safe way to bring sensors close to the power transmission lines and their associated components without halting the equipment during the inspection, and reducing operational cost and risk. In this work, a drone, equipped with multi-modal sensors, captures images in the visible and infrared domain and transmits them to the ground station. We used state-of-the-art computer vision methods to highlight expected faults (i.e., hot spots) or damaged components of the electrical infrastructure (i.e., damaged insulators). Infrared imaging, which is invariant to large scale and illumination changes in the real operating environment, supported the identification of faults in power transmission lines; while a neural network is adapted and trained to detect and classify insulators from an optical video stream. We demonstrate our approach on data captured by a drone in Parma, Italy.

9.
Stud Health Technol Inform ; 207: 390-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25488245

RESUMO

This paper discusses the problem of fostering lifestyle changes towards healthier habits via tailored user guidance. We present a novel multisensory device, the Wize Mirror, which will be able to detect semeiotic face signs related to cardio-metabolic risk, and encourage users to reduce their risk by improving their lifestyle. Offering a proper user guidance requires solving three main issues: user profiling, definition of a wellness index based on biophysical data, and personalized guidance by means of coaching and supportive messages. For each of these issues, the solutions proposed in the EU FP7 Project SEMEOTICONS are presented, highlighting their advantages with respect to the state-of-the-art.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Expressão Facial , Promoção da Saúde/métodos , Estilo de Vida Saudável , Doenças Metabólicas/prevenção & controle , Pigmentação da Pele , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...