Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Comput Biol ; 30(12): 1322-1326, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37878344

RESUMO

In silico identification of long noncoding RNAs (lncRNAs) is a multistage process including filtering of transcripts according to their physical characteristics (e.g., length, exon-intron structure) and determination of the coding potential of the sequence. A common issue within this process is the choice of the most suitable method of coding potential analysis for the conducted research. Selection of tools on the sole basis of their single performance may not provide the most effective choice for a specific problem. To overcome these limitations, we developed the R library lncRna, which provides functions to easily carry out the entire lncRNA identification process. For example, the package prepares the data files for coding potential analysis to perform error analysis. Moreover, the package gives the opportunity to analyze the effectiveness of various combinations of the lncRNA prediction methods to select the optimal configuration of the entire process.


Assuntos
RNA Longo não Codificante , Software , RNA Longo não Codificante/genética , Biologia Computacional
2.
Int J Mol Sci ; 24(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37686383

RESUMO

The XBB.1.16 SARS-CoV-2 variant, also known as Arcturus, is a recent descendant lineage of the recombinant XBB (nicknamed Gryphon). Compared to its direct progenitor, XBB.1, XBB.1.16 carries additional spike mutations in key antigenic sites, potentially conferring an ability to evade the immune response compared to other circulating lineages. In this context, we conducted a comprehensive genome-based survey to gain a detailed understanding of the evolution and potential dangers of the XBB.1.16 variant, which became dominant in late June. Genetic data indicates that the XBB.1.16 variant exhibits an evolutionary background with limited diversification, unlike dangerous lineages known for rapid changes. The evolutionary rate of XBB.1.16, which amounts to 3.95 × 10-4 subs/site/year, is slightly slower than that of its direct progenitors, XBB and XBB.1.5, which have been circulating for several months. A Bayesian Skyline Plot reconstruction suggests that the peak of genetic variability was reached in early May 2023, and currently, it is in a plateau phase with a viral population size similar to the levels observed in early March. Structural analyses indicate that, overall, the XBB.1.16 variant does not possess structural characteristics markedly different from those of the parent lineages, and the theoretical affinity for ACE2 does not seem to change among the compared variants. In conclusion, the genetic and structural analyses of SARS-CoV-2 XBB.1.16 do not provide evidence of its exceptional danger or high expansion capability. Detected differences with previous lineages are probably due to genetic drift, which allows the virus constant adaptability to the host, but they are not necessarily connected to a greater danger. Nevertheless, continuous genome-based monitoring is essential for a better understanding of its descendants and other lineages.


Assuntos
COVID-19 , Humanos , Teorema de Bayes , COVID-19/genética , SARS-CoV-2/genética , Deriva Genética
3.
J Med Virol ; 95(9): e29075, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37665162

RESUMO

The severe acute respiratory syndrome coronavirus 2 EG.5 lineage is the latest variant under monitoring, and it is generating significant concern due to its recent upward trend in prevalence. Our aim was to gain insights into this emerging lineage and offer insights into its actual level of threat. Both genetic and structural data indicate that this novel variant presently lacks substantial evidence of having a high capacity for widespread transmission. Their viral population sizes expanded following a very mild curve and peaked several months after the earliest detected sample. Currently, neither the viral population size of EG.5 nor that of its first descendant is increasing. The genetic variability appear to be flattened, as evidenced by its relatively modest evolutionary rate (9.05 × 10-4 subs/site/year). As has been observed with numerous prior variants, attributes that might theoretically provide advantages seem to stem from genetic drift, enabling the virus to continually adjust to its host, albeit without a clear association with enhanced dangerousness. These findings further underscore the necessity for ongoing genome-based monitoring, ensuring preparedness and a well-documented understanding of the unfolding situation.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Evolução Biológica , Deriva Genética , Densidade Demográfica
4.
Viruses ; 15(8)2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37632063

RESUMO

The COVID-19 pandemic has not only strained healthcare systems in Africa but has also intensified the impact of emerging and re-emerging diseases. Specifically in Equatorial Guinea, mirroring the situation in other African countries, unique zoonotic outbreaks have occurred during this challenging period. One notable resurgence is Marburg virus disease (MVD), which has further burdened the already fragile healthcare system. The re-emergence of the Marburg virus amid the COVID-19 pandemic is believed to stem from a probable zoonotic spill-over, although the precise transmission routes remain uncertain. Given the gravity of the situation, addressing the existing challenges is paramount. Though the genome sequences from the current outbreak were not available for this study, we analyzed all the available whole genome sequences of this re-emerging pathogen to advocate for a shift towards active surveillance. This is essential to ensure the successful containment of any potential Marburg virus outbreak in Equatorial Guinea and the wider African context. This study, which presents an update on the phylodynamics and the genetic variability of MARV, further confirmed the existence of at least two distinct patterns of viral spread. One pattern demonstrates a slower but continuous and recurring virus circulation, while the other exhibits a faster yet limited and episodic spread. These results highlight the critical need to strengthen genomic surveillance in the region to effectively curb the pathogen's dissemination. Moreover, the study emphasizes the importance of prompt alert management, comprehensive case investigation and analysis, contact tracing, and active case searching. These steps are vital to support the healthcare system's response to this emerging health crisis. By implementing these strategies, we can better arm ourselves against the challenges posed by the resurgence of the Marburg virus and other infectious diseases.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , África/epidemiologia , População Negra , COVID-19/epidemiologia , Marburgvirus/genética , Pandemias , Doença do Vírus de Marburg/epidemiologia , Doença do Vírus de Marburg/genética , Doença do Vírus de Marburg/virologia , Surtos de Doenças , Guiné Equatorial/epidemiologia , Zoonoses Virais/epidemiologia , Zoonoses Virais/genética , Zoonoses Virais/virologia , Filogenia
5.
J Med Virol ; 95(8): e29012, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37548148

RESUMO

This comprehensive review focuses on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its impact as the cause of the COVID-19 pandemic. Its objective is to provide a cohesive overview of the epidemic history and evolutionary aspects of the virus, with a particular emphasis on its emergence, global spread, and implications for public health. The review delves into the timelines and key milestones of SARS-CoV-2's epidemiological progression, shedding light on the challenges encountered during early containment efforts and subsequent waves of transmission. Understanding the evolutionary dynamics of the virus is crucial in monitoring its potential for adaptation and future outbreaks. Genetic characterization of SARS-CoV-2 is discussed, with a focus on the emergence of new variants and their implications for transmissibility, severity, and immune evasion. The review highlights the important role of genomic surveillance in tracking viral mutations linked to establishing public health interventions. By analyzing the origins, global spread, and genetic evolution of SARS-CoV-2, valuable insights can be gained for the development of effective control measures, improvement of pandemic preparedness, and addressing future emerging infectious diseases of international concern.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Pandemias/prevenção & controle , Saúde Pública , Surtos de Doenças
6.
Microorganisms ; 11(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37512996

RESUMO

Recombination events are very common and represent one of the primary drivers of RNA virus evolution. The XBF SARS-CoV-2 lineage is one of the most recently generated recombinants during the COVID-19 pandemic. It is a recombinant of BA.5.2.3 and BA.2.75.3, both descendants of lineages that caused many concerns (BA.5 and BA.2.75, respectively). Here, we performed a genomic survey focused on comparing the recombinant XBF with its parental lineages to provide a comprehensive assessment of the evolutionary potential, epidemiological trajectory, and potential risks. Genetic analyses indicated that although XBF initially showed the typical expansion depicted by a steep curve, causing several concerns, currently there is no indication of significant expansion potential or a contagion rate surpassing that of other currently active or previously prevalent lineages. BSP indicated that the peak has been reached around 19 October 2022 and then the genetic variability suffered slight oscillations until early 5 March 2023 when the population size reduced for the last time starting its last plateau that is still lasting. Structural analyses confirmed its reduced potential, also indicating that properties of NTDs and RBDs of XBF and its parental lineages present no significant difference. Of course, cautionary measures must still be taken and genome-based monitoring remains the best tool for detecting any important changes in viral genome composition.

7.
Infect Dis Rep ; 15(3): 292-298, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37367188

RESUMO

In early February 2023, the Omicron subvariant XBB.1.5, also known as "Kraken", accounted for more than 44% of new COVID-19 cases worldwide, whereas a relatively new Omicron subvariant named CH.1.1, deemed "Orthrus", accounted for less than 6% of new COVID-19 cases during the subsequent weeks. This emerging variant carries a mutation, L452R, previously observed in the highly pathogenic Delta and the highly transmissible BA.4 and BA.5 variants, necessitating a shift to active surveillance to assure adequate preparedness for likely future epidemic peaks. We provide a preliminary understanding of the global distribution of this emerging SARS-CoV-2 variant by combining genomic data with structural molecular modeling. In addition, we shield light on the number of specific point mutations in this lineage that may have functional significance, thereby increasing the risk of disease severity, vaccine resistance, and increased transmission. This variant shared about 73% of the mutations with Omicron-like strains. Our homology modeling analysis revealed that CH.1.1 may have a weakened interaction with ACE2 and that its electrostatic potential surface appears to be more positive than that of the reference ancestral virus. Finally, our phylogenetic analysis revealed that this likely-emerging variant was already cryptically circulating in European countries prior to its first detection, highlighting the importance of having access to whole genome sequences for detecting and controlling emerging viral strains.

8.
Infect Dis Rep ; 15(3): 307-318, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37367190

RESUMO

Bats are well-known to be natural reservoirs of various zoonotic coronaviruses, which have caused outbreaks of severe acute respiratory syndrome (SARS) and the COVID-19 pandemic in 2002 and 2019, respectively. In late 2020, two new Sarbecoviruses were found in Russia, isolated in Rhinolophus bats, i.e., Khosta-1 in R. ferrumequinum and Khosta-2 in R. hipposideros. The potential danger associated with these new species of Sarbecovirus is that Khosta-2 has been found to interact with the same entry receptor as SARS-CoV-2. Our multidisciplinary approach in this study demonstrates that Khosta-1 and -2 currently appear to be not dangerous with low risk of spillover, as confirmed by prevalence data and by phylogenomic reconstruction. In addition, the interaction between Khosta-1 and -2 with ACE2 appears weak, and furin cleavage sites are absent. While the possibility of a spillover event cannot be entirely excluded, it is currently highly unlikely. This research further emphasizes the importance of assessing the zoonotic potential of widely distributed batborne CoV in order to monitor changes in genomic composition of viruses and prevent spillover events (if any).

9.
Front Mol Biosci ; 10: 1169109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234922

RESUMO

Collectively, rare genetic disorders affect a substantial portion of the world's population. In most cases, those affected face difficulties in receiving a clinical diagnosis and genetic characterization. The understanding of the molecular mechanisms of these diseases and the development of therapeutic treatments for patients are also challenging. However, the application of recent advancements in genome sequencing/analysis technologies and computer-aided tools for predicting phenotype-genotype associations can bring significant benefits to this field. In this review, we highlight the most relevant online resources and computational tools for genome interpretation that can enhance the diagnosis, clinical management, and development of treatments for rare disorders. Our focus is on resources for interpreting single nucleotide variants. Additionally, we present use cases for interpreting genetic variants in clinical settings and review the limitations of these results and prediction tools. Finally, we have compiled a curated set of core resources and tools for analyzing rare disease genomes. Such resources and tools can be utilized to develop standardized protocols that will enhance the accuracy and effectiveness of rare disease diagnosis.

10.
Microorganisms ; 11(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37110335

RESUMO

Since the beginning of the pandemic, the generation of new variants periodically recurs. The XBB.1.5 SARS-CoV-2 variant is one of the most recent. This research was aimed at verifying the potential hazard of this new subvariant. To achieve this objective, we performed a genome-based integrative approach, integrating results from genetic variability/phylodynamics with structural and immunoinformatic analyses to obtain as comprehensive a viewpoint as possible. The Bayesian Skyline Plot (BSP) shows that the viral population size reached the plateau phase on 24 November 2022, and the number of lineages peaked at the same time. The evolutionary rate is relatively low, amounting to 6.9 × 10-4 subs/sites/years. The NTD domain is identical for XBB.1 and XBB.1.5 whereas their RBDs only differ for the mutations at position 486, where the Phe (in the original Wuhan) is replaced by a Ser in XBB and XBB.1, and by a Pro in XBB.1.5. The variant XBB.1.5 seems to spread more slowly than sub-variants that have caused concerns in 2022. The multidisciplinary molecular in-depth analyses on XBB.1.5 performed here does not provide evidence for a particularly high risk of viral expansion. Results indicate that XBB.1.5 does not possess features to become a new, global, public health threat. As of now, in its current molecular make-up, XBB.1.5 does not represent the most dangerous variant.

12.
Future Virol ; 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36896145

RESUMO

The SARS-CoV-2 Spike receptor binding domain and N-terminal domain interact with each other in an intricate mechanism. Mutations modulate the interplay between the Spike and host molecules. This editorial comments on the intricacies of SARS-CoV-2 Spike interactions.

13.
J Med Virol ; 95(4): e28714, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37000592

RESUMO

The SARS-CoV-2 BF.7 variant represents one of the most recent subvariant under monitoring. At the beginning of the 2023 it caused several concerns especially in Asia because of a resurge in COVID-19 cases. Here we perform a genome-based integrative approach on SARS-CoV-2 BF.7 to shed light on this emerging lineage and produce some consideration on its real dangerousness. Both genetic and structural data suggest that this new variant currently does not show evidence of an high expansion capability. It is very common in Asia, but it appears less virulent than other Omicron variants as proved by its relatively low evolutionary rate (5.62 × 10-4 subs/sites/years). The last plateau has been reached around December 14, 2022 and then the genetic variability, and thus the viral population size, no longer increased. As already seen for several previous variants, the features that may be theoretically related to advantages are due to genetic drift that allows to the virus a constant adaptability to the host, but is not strictly connected to a fitness advantage. These results have further pointed that the genome-based monitoring must continue uninterruptedly to be prepared and well documented on the real situation.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Ásia/epidemiologia , Evolução Biológica
15.
J Med Virol ; 95(3): e28625, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36852665

RESUMO

Recombination is the main contributor to RNA virus evolution, and SARS-CoV-2 during the pandemic produced several recombinants. The most recent SARS-CoV-2 recombinant is the lineage labeled XBB, also known as Gryphon, which arose from BJ.1 and BM.1.1.1. Here we performed a genome-based survey aimed to compare the new recombinant with its parental lineages that never became dominant. Genetic analyses indicated that the recombinant XBB and its first descendant XBB.1 show an evolutionary condition typical of an evolutionary blind background with no further epidemiologically relevant descendant. Genetic variability and expansion capabilities are slightly higher than parental lineages. Bayesian Skyline Plot indicates that XBB reached its plateau around October 6, 2022 and after an initial rapid growth the viral population size did not further expand, and around November 10, 2022 its levels of genetic variability decreased. Simultaneously with the reduction of the XBB population size, an increase of the genetic variability of its first sub-lineage XBB.1 occurred, that in turn reached the plateau around November 9, 2022 showing a kind of vicariance with its direct progenitors. Structure analysis indicates that the affinity for ACE2 surface in XBB/XBB.1 RBDs is weaker than for BA.2 RBD. In conclusion, at present XBB and XBB.1 do not show evidence about a particular danger or high expansion capability. Genome-based monitoring must continue uninterrupted to individuate if further mutations can make XBB more dangerous or generate new subvariants with different expansion capability.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Teorema de Bayes , Glicoproteína da Espícula de Coronavírus/química
18.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499592

RESUMO

The BQ.1 SARS-CoV-2 variant, also known as Cerberus, is one of the most recent Omicron descendant lineages. Compared to its direct progenitor BA.5, BQ.1 has some additional spike mutations in some key antigenic sites, which confer further immune escape ability over other circulating lineages. In such a context, here, we perform a genome-based survey aimed at obtaining a complete-as-possible nuance of this rapidly evolving Omicron subvariant. Genetic data suggest that BQ.1 represents an evolutionary blind background, lacking the rapid diversification that is typical of a dangerous lineage. Indeed, the evolutionary rate of BQ.1 is very similar to that of BA.5 (7.6 × 10-4 and 7 × 10-4 subs/site/year, respectively), which has been circulating for several months. The Bayesian Skyline Plot reconstruction indicates a low level of genetic variability, suggesting that the peak was reached around 3 September 2022. Concerning the affinity for ACE2, structure analyses (also performed by comparing the properties of BQ.1 and BA.5 RBD) indicate that the impact of the BQ.1 mutations may be modest. Likewise, immunoinformatic analyses showed moderate differences between the BQ.1 and BA5 potential B-cell epitopes. In conclusion, genetic and structural analyses on SARS-CoV-2 BQ.1 suggest no evidence of a particularly dangerous or high expansion capability. Genome-based monitoring must continue uninterrupted for a better understanding of its descendants and all other lineages.


Assuntos
COVID-19 , Humanos , Teorema de Bayes , COVID-19/epidemiologia , COVID-19/genética , SARS-CoV-2/genética , Evolução Biológica
19.
Pathogens ; 11(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35890058

RESUMO

An analysis of the structural effect of the mutations of the B.1.640.2 (IHU) Spike Receptor Binding Domain (RBD) and N-terminal Domain (NTD) is reported along with a comparison with the sister lineage B.1.640.1. and a selection of variants of concern. The effect of the mutations on the RBD-ACE2 interaction was also assessed. The structural analysis applied computational methods that are able to carry out in silico mutagenesis to calculate energy minimization and the folding energy variation consequent to residue mutations. Tools for electrostatic calculation were applied to quantify and display the protein surface electrostatic potential. Interactions at the RBD-ACE2 interface were scrutinized using computational tools that identify the interactions and predict the contribution of each interface residue to the stability of the complex. The comparison among the RBDs shows that the most evident differences between the variants is in the distribution of the surface electrostatic potential: that of B.1.640.1 is as that of the Alpha RBD, while B.1.640.2 appears to have an intermediate surface potential pattern with characteristics between those of the Alpha and Delta variants. Moreover, the B.1.640.2 Spike includes the mutation E484K that in other variants has been suggested to be involved in immune evasion. These properties may hint at the possibility that B.1.640.2 emerged with a potentially increased infectivity with respect to the sister B.1.640.1 variant, but significantly lower than that of the Delta and Omicron variants. However, the analysis of their NTD domains highlights deletions, destabilizing mutations and charge alterations that can limit the ability of the B.1.640.1 and B.1.640.2 variants to interact with cellular components, such as cell surface receptors.

20.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628365

RESUMO

The dramatic experience with SARS-CoV-2 has alerted the scientific community to be ready to face new epidemics/pandemics caused by new variants. Among the therapies against the pandemic SARS-CoV-2 virus, monoclonal Antibodies (mAbs) targeting the Spike glycoprotein have represented good drugs to interfere in the Spike/ Angiotensin Converting Enzyme-2 (ACE-2) interaction, preventing virus cell entry and subsequent infection, especially in patients with a defective immune system. We obtained, by an innovative phage display selection strategy, specific binders recognizing different epitopes of Spike. The novel human antibodies specifically bind to Spike-Receptor Binding Domain (RBD) in a nanomolar range and interfere in the interaction of Spike with the ACE-2 receptor. We report here that one of these mAbs, named D3, shows neutralizing activity for virus infection in cell cultures by different SARS-CoV-2 variants and retains the ability to recognize the Omicron-derived recombinant RBD differently from the antibodies Casirivimab or Imdevimab. Since anti-Spike mAbs, used individually, might be unable to block the virus cell entry especially in the case of resistant variants, we investigated the possibility to combine D3 with the antibody in clinical use Sotrovimab, and we found that they recognize distinct epitopes and show additive inhibitory effects on the interaction of Omicron-RBD with ACE-2 receptor. Thus, we propose to exploit these mAbs in combinatorial treatments to enhance their potential for both diagnostic and therapeutic applications in the current and future pandemic waves of coronavirus.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Humanos , Glicoproteína da Espícula de Coronavírus/química , Proteínas do Envelope Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...