Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 97: 510-528, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30678938

RESUMO

Silicate-substituted hydroxyapatite scaffolds containing multiscale porosity are manufactured. Model parts containing macropores of five cross-sectional geometries (circle, square, rhombus, star and triangle) and two sizes are shaped by microstereolithography. Three open microporosity contents (0.5, 23 or 37 vol%) are introduced in the ceramic. MC3T3-E1 pre-osteoblasts are seeded onto these scaffolds. Analysis of cell colonization inside the macropores after 7 and 14 days of cultivation shows that the cellular filling is proportional to the macropore size and strongly influenced by macropore shape. Straight edges and convex surfaces are detrimental. High aspect ratios, the absence of reentrant angles and the presence of acute angles, by creating concavities and minimizing flat surfaces, facilitate cell colonization. Rhombus and triangle cross-sections are thus particularly favorable, while square and star geometries are the least favored. An increase in the microporosity content strongly impairs cell growth in the macropores. The data are statistically analyzed using a principal components analysis that shows that macro- and microtopographical parameters of scaffolds must be collectively considered with correlated interactions to understand cell behavior. The results indicate the important cell sensing of topography during the initial step of cell adhesion and proliferation and evidence the need for an optimized scaffold design.


Assuntos
Cerâmica/química , Durapatita/química , Silício/química , Citoesqueleto de Actina/efeitos dos fármacos , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cerâmica/farmacologia , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Porosidade , Análise de Componente Principal
2.
Langmuir ; 34(40): 12036-12048, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30204449

RESUMO

Nanocrystalline apatites mimicking bone mineral represent a versatile platform for biomedical applications thanks to their similarity to bone apatite and the possibility to (multi)functionalize them so as to provide "à la carte" properties. One relevant domain is in particular oncology, where drug-loaded biomaterials and engineered nanosystems may be used for diagnosis, therapy, or both. In a previous contribution, we investigated the adsorption of doxorubicin onto two nanocrystalline apatite substrates, denoted HA and FeHA (superparamagnetic apatite doped with iron ions), and explored these drug-loaded systems against tumor cells. To widen their applicability in the oncology field, here we examine the interaction between the same two substrates and two other molecules: folic acid (FA), often used as cell targeting agent, and the anticancer drug methotrexate (MTX), an antifolate analogue. In a first stage, we investigated the adsorptive behavior of FA (or MTX) on both substrates, evidencing their specificities. At low concentration, typically under 100 mmol/L, adsorption onto HA was best described using the Sips isotherm model, while the formation of a calcium folate secondary salt was evidenced at high concentration by Raman spectroscopy. Adsorption onto FeHA was instead fitted to the Langmuir model. A larger adsorptive affinity was found for the FeHA substrate compared to HA; accordingly, a faster release was noticed from HA. In vitro tests carried out on human osteosarcoma cell line (SAOS-2) allowed us to evaluate the potential of these compounds in oncology. Finally, in vivo (subcutaneous) implantations in the mouse were run to ascertain the biocompatibility of the two substrates. These results should allow a better understanding of the interactions between FA/MTX and bioinspired nanocrystalline apatites in view of applications in the field of cancer.


Assuntos
Antineoplásicos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Ácido Fólico/química , Hidroxiapatitas/química , Metotrexato/farmacologia , Adsorção , Animais , Antineoplásicos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Antagonistas do Ácido Fólico/química , Humanos , Hidroxiapatitas/toxicidade , Metotrexato/química , Camundongos Endogâmicos C57BL , Nanopartículas/química , Nanopartículas/toxicidade
3.
Acta Biomater ; 38: 179-89, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27131570

RESUMO

UNLABELLED: The development of scaffolds for bone filling of large defects requires an understanding of angiogenesis and vascular guidance, which are crucial processes for bone formation and healing. There are few investigations on the ability of a scaffold to support blood vessel guidance and it this is of great importance because it relates to the quality and dispersion of the blood vessel network. This work reports an analysis of vascularisation of porous silicon-substituted hydroxyapatite (SiHA) bioceramics and the effects of pore shape on vascular guidance using an expedient ex ovo model, the chick embryo chorioallantoic membrane (CAM) assay. Image analysis of vascularised implants assessed the vascular density, fractal dimension and diameter of blood vessels at two different scales (the whole ceramic and pores alone) and was performed on model SiHA ceramics harbouring pores of various cross-sectional geometries (circles, square, rhombus, triangles and stars). SiHA is a biocompatible material which allows the conduction of blood vessels on its surface. The presence of pores did not influence angiogenesis related-parameters (arborisation, fractal dimension) but pore geometry affected the blood vessel guidance and angio-conductive potential (diameter and number of the blood vessels converging toward the pores). The measured angles of pore cross-section modulated the number and diameter of blood vessels converging to pores, with triangular pores appearing of particular interest. This result will be used for shaping ceramic scaffolds with specific porous architecture to promote vascular colonisation and osteointegration. STATEMENT OF SIGNIFICANCE: An expedient and efficient method, using chick embryo chorioallantoic membrane (CAM) assays, has been set up to characterise quantitatively the angiogenesis and the vascular conduction in scaffolds. This approach complements the usual cell culture assays and could replace to a certain extent in vivo experiments. It was applied to silicon-substituted hydroxyapatite porous bioceramics with various pore shapes. The material was found to be biocompatible, allowing the conduction of blood vessels on its surface. The presence of pores does not influence the angiogenesis but the pore shape affects the blood vessel guidance and angio-conductive potential. Pores with triangular cross-section appear particularly attractive for the further design of scaffolds in order to promote their vascular colonisation and osteointegration and improve their performances.


Assuntos
Cerâmica , Membrana Corioalantoide/irrigação sanguínea , Durapatita , Teste de Materiais , Neovascularização Fisiológica/efeitos dos fármacos , Silício , Animais , Cerâmica/química , Cerâmica/farmacologia , Embrião de Galinha , Durapatita/química , Durapatita/farmacologia , Porosidade , Silício/química , Silício/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...