Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Indoor Air ; 31(6): 1860-1873, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34096643

RESUMO

The SARS-CoV-2 pandemic has created a great demand for a better understanding of the spread of viruses in indoor environments. A novel measurement system consisting of one portable aerosol-emitting mannequin (emitter) and a number of portable aerosol-absorbing mannequins (recipients) was developed that can measure the spread of aerosols and droplets that potentially contain infectious viruses. The emission of the virus from a human is simulated by using tracer particles solved in water. The recipients inhale the aerosols and droplets and quantify the level of solved tracer particles in their artificial lungs simultaneously over time. The mobile system can be arranged in a large variety of spreading scenarios in indoor environments and allows for quantification of the infection probability due to airborne virus spreading. This study shows the accuracy of the new measurement system and its ability to compare aerosol reduction measures such as regular ventilation or the use of a room air purifier.


Assuntos
Aerossóis/análise , Filtros de Ar , Poluição do Ar em Ambientes Fechados , Poluição do Ar em Ambientes Fechados/análise , COVID-19 , Humanos , SARS-CoV-2
2.
Artif Organs ; 40(11): E192-E202, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27087467

RESUMO

Left ventricular assist devices (LVADs) have become a standard therapy for patients with severe heart failure. As low blood trauma in LVADs is important for a good clinical outcome, the assessment of the fluid loads inside the pump is critical. More specifically, the flow features on the surfaces where the interaction between blood and artificial material happens is of great importance. Therefore, experimental data for the near-wall flows in an axial rotary blood pump were collected and directly compared to computational fluid dynamic results. For this, the flow fields based on unsteady Reynolds-averaged Navier-Stokes simulations-computational fluid dynamics (URANS-CFD) of an axial rotary blood pump were calculated and compared with experimental flow data at one typical state of operation in an enlarged model of the pump. The focus was set on the assessment of wall shear stresses (WSS) at the housing wall and rotor gap region by means of the wall-particle image velocimetry technique, and the visualization of near-wall flow structures on the inner pump surfaces by a paint erosion method. Additionally, maximum WSS and tip leakage volume flows were measured for 13 different states of operation. Good agreement between CFD and experimental data was found, which includes the location, magnitude, and direction of the maximum and minimum WSS and the presence of recirculation zones on the pump stators. The maximum WSS increased linearly with pressure head. They occurred at the upstream third of the impeller blades and exceeded the critical values with respect to hemolysis. Regions of very high shear stresses and recirculation zones could be identified and were in good agreement with simulations. URANS-CFD, which is often used for pump performance and blood damage prediction, seems to be, therefore, a valid tool for the assessment of flow fields in axial rotary blood pumps. The magnitude of maximum WSS could be confirmed and were in the order of several hundred Pascal.


Assuntos
Insuficiência Cardíaca/cirurgia , Coração Auxiliar/efeitos adversos , Hemodinâmica , Modelos Cardiovasculares , Estresse Mecânico , Simulação por Computador , Desenho de Equipamento , Hemólise , Humanos , Reologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-26565306

RESUMO

We experimentally investigated the noise-induced dynamics of a prototypical thermoacoustic system undergoing a subcritical Hopf bifurcation to limit cycle oscillations. The study was performed prior to the bistable regime. Analysis of the characteristics of pressure oscillations in the combustor and fluctuations in the heat release rate from the flame-the two physical entities involved in thermoacoustic coupling-at increasing levels of noise indicated precursors to the Hopf bifurcation. These precursors were further identified to be a result of coherence resonance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...