Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 3(1): 84, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598259

RESUMO

Research on marine microbial communities is growing, but studies are hard to compare because of variation in seawater sampling protocols. To help researchers in the inter-comparison of studies that use different seawater sampling methodologies, as well as to help them design future sampling campaigns, we developed the EuroMarine Open Science Exploration initiative (EMOSE). Within the EMOSE framework, we sampled thousands of liters of seawater from a single station in the NW Mediterranean Sea (Service d'Observation du Laboratoire Arago [SOLA], Banyuls-sur-Mer), during one single day. The resulting dataset includes multiple seawater processing approaches, encompassing different material-type kinds of filters (cartridge membrane and flat membrane), three different size fractionations (>0.22 µm, 0.22-3 µm, 3-20 µm and >20 µm), and a number of different seawater volumes ranging from 1 L up to 1000 L. We show that the volume of seawater that is filtered does not have a significant effect on prokaryotic and protist diversity, independently of the sequencing strategy. However, there was a clear difference in alpha and beta diversity between size fractions and between these and "whole water" (with no pre-fractionation). Overall, we recommend care when merging data from datasets that use filters of different pore size, but we consider that the type of filter and volume should not act as confounding variables for the tested sequencing strategies. To the best of our knowledge, this is the first time a publicly available dataset effectively allows for the clarification of the impact of marine microbiome methodological options across a wide range of protocols, including large-scale variations in sampled volume.

2.
Environ Res ; 231(Pt 1): 116040, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37150387

RESUMO

The monitoring of cities' wastewaters for the detection of potentially pathogenic viruses and bacteria has been considered a priority during the COVID-19 pandemic to monitor public health in urban environments. The methodological approaches frequently used for this purpose include deoxyribonucleic acid (DNA)/Ribonucleic acid (RNA) isolation followed by quantitative polymerase chain reaction (qPCR) and reverse transcription (RT)‒qPCR targeting pathogenic genes. More recently, the application of metatranscriptomic has opened opportunities to develop broad pathogenic monitoring workflows covering the entire pathogenic community within the sample. Nevertheless, the high amount of data generated in the process requires an appropriate analysis to detect the pathogenic community from the entire dataset. Here, an implementation of a bioinformatic workflow was developed to produce a map of the detected pathogenic bacteria and viruses in wastewater samples by analysing metatranscriptomic data. The main objectives of this work was the development of a computational methodology that can accurately detect both human pathogenic virus and bacteria in wastewater samples. This workflow can be easily reproducible with open-source software and uses efficient computational resources. The results showed that the used algorithms can predict potential human pathogens presence in the tested samples and that active forms of both bacteria and virus can be identified. By comparing the computational method implemented in this study to other state-of-the-art workflows, the implementation analysis was faster, while providing higher accuracy and sensitivity. Considering these results, the processes and methods to monitor wastewater for potential human pathogens can become faster and more accurate. The proposed workflow is available at https://github.com/waterpt/watermonitor and can be implemented in currently wastewater monitoring programs to ascertain the presence of potential human pathogenic species.


Assuntos
COVID-19 , Vírus , Humanos , Águas Residuárias , Pandemias , Vírus/genética , Bactérias/genética
3.
Front Microbiol ; 13: 927129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274733

RESUMO

Antarctic deserts, such as the McMurdo Dry Valleys (MDV), represent extremely cold and dry environments. Consequently, MDV are suitable for studying the environment limits on the cycling of key elements that are necessary for life, like nitrogen. The spatial distribution and biogeochemical drivers of nitrogen-cycling pathways remain elusive in the Antarctic deserts because most studies focus on specific nitrogen-cycling genes and/or organisms. In this study, we analyzed metagenome and relevant environmental data of 32 MDV soils to generate a complete picture of the nitrogen-cycling potential in MDV microbial communities and advance our knowledge of the complexity and distribution of nitrogen biogeochemistry in these harsh environments. We found evidence of nitrogen-cycling genes potentially capable of fully oxidizing and reducing molecular nitrogen, despite the inhospitable conditions of MDV. Strong positive correlations were identified between genes involved in nitrogen cycling. Clear relationships between nitrogen-cycling pathways and environmental parameters also indicate abiotic and biotic variables, like pH, water availability, and biological complexity that collectively impose limits on the distribution of nitrogen-cycling genes. Accordingly, the spatial distribution of nitrogen-cycling genes was more concentrated near the lakes and glaciers. Association rules revealed non-linear correlations between complex combinations of environmental variables and nitrogen-cycling genes. Association rules for the presence of denitrification genes presented a distinct combination of environmental variables from the remaining nitrogen-cycling genes. This study contributes to an integrative picture of the nitrogen-cycling potential in MDV.

4.
Microb Ecol ; 84(1): 59-72, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34405249

RESUMO

The Arctic Ocean is facing rapid environmental changes with cascading effects on the entire Arctic marine ecosystem. However, we have a limited understanding of the consequences such changes have on bacteria and archaea (prokaryotes) at the base of the marine food web. In this study, we show how the prokaryotic rare biosphere behaves over a range of highly heterogeneous environmental conditions using 16S rRNA gene reads from amplicon and metagenome sequencing data from seawater samples collected during the Norwegian young sea ICE expedition between late winter and early summer. The prokaryotic rare biosphere was analyzed using different approaches: amplicon sequence variants and operational taxonomic units from the 16S rRNA gene amplicons and operational taxonomic units from the 16S rRNA genes of the metagenomes. We found that prokaryotic rare biosphere communities are specific to certain water masses, and that the majority of the rare taxa identified were always rare and disappeared in at least one sample under changing conditions, suggesting their high sensitivity to environmental heterogeneity. In addition, our methodological comparison revealed a good performance of 16S rRNA gene amplicon sequencing in describing rare biosphere patterns, while the metagenome-derived data were better to capture a significant diversity of so-far uncultivated rare taxa. Our analysis on the dynamics of the rare prokaryotic biosphere, by combining different methodological approaches, improves the description of the types of rarity predicted from Community Assembly theory in the Arctic Ocean.


Assuntos
Ecossistema , Água do Mar , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
5.
FEMS Microbiol Ecol ; 97(1)2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33175111

RESUMO

Our ability to describe the highly diverse pool of low abundance populations present in natural microbial communities is increasing at an unprecedented pace. Yet we currently lack an integrative view of the key taxa, functions and metabolic activity which make-up this communal pool, usually referred to as the 'rare biosphere', across the domains of life. In this context, this review examines the microbial rare biosphere in its broader sense, providing an historical perspective on representative studies which enabled to bridge the concept from macroecology to microbial ecology. It then addresses our current knowledge of the prokaryotic rare biosphere, and covers emerging insights into the ecology, taxonomy and evolution of low abundance microeukaryotic, viral and host-associated communities. We also review recent methodological advances and provide a synthetic overview on how the rare biosphere fits into different conceptual models used to explain microbial community assembly mechanisms, composition and function.


Assuntos
Biodiversidade , Microbiota , Filogenia
6.
Front Microbiol ; 11: 231, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140148

RESUMO

Current research on the prokaryotic low abundance taxa, the prokaryotic rare biosphere, is growing, leading to a greater understanding of the mechanisms underlying organismal rarity and its relevance in ecology. From this emerging knowledge it is possible to envision innovative approaches in biotechnology applicable to several sectors. Bioremediation and bioprospecting are two of the most promising areas where such approaches could find feasible implementation, involving possible new solutions to the decontamination of polluted sites and to the discovery of novel gene variants and pathways based on the attributes of rare microbial communities. Bioremediation can be improved through the realization that diverse rare species can grow abundant and degrade different pollutants or possibly transfer useful genes. Further, most of the prokaryotic diversity found in virtually all environments belongs in the rare biosphere and remains uncultivatable, suggesting great bioprospecting potential within this vast and understudied genetic pool. This Mini Review argues that knowledge of the ecophysiology of rare prokaryotes can aid the development of future, efficient biotechnology-based processes, products and services. However, this promise may only be fulfilled through improvements in (and optimal blending of) advanced microbial culturing and physiology, metagenomics, genome annotation and editing, and synthetic biology, to name a few areas of relevance. In the future, it will be important to understand how activity profiles relate with abundance, as some rare taxa can remain rare and increase activity, whereas other taxa can grow abundant. The metabolic mechanisms behind those patterns can be useful in designing biotechnological processes.

7.
Microorganisms ; 8(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085500

RESUMO

Bacterial natural products (NPs) are still a major source of new drug leads. Polyketides (PKs) and non-ribosomal peptides (NRP) are two pharmaceutically important families of NPs and recent studies have revealed Antarctica to harbor endemic polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes, likely to be involved in the production of novel metabolites. Despite this, the diversity of secondary metabolites genes in Antarctica is still poorly explored. In this study, a computational bioprospection approach was employed to study the diversity and identity of PKS and NRPS genes to one of the most biodiverse areas in maritime Antarctica-Maxwell Bay. Amplicon sequencing of soil samples targeting ketosynthase (KS) and adenylation (AD) domains of PKS and NRPS genes, respectively, revealed abundant and unexplored chemical diversity in this peninsula. About 20% of AD domain sequences were only distantly related to characterized biosynthetic genes. Several PKS and NRPS genes were found to be closely associated to recently described metabolites including those from uncultured and candidate phyla. The combination of new approaches in computational biology and new culture-dependent and -independent strategies is thus critical for the recovery of the potential novel chemistry encoded in Antarctica microorganisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...