Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 192, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365881

RESUMO

The initial exposure to pathogens and commensals confers innate immune cells the capacity to respond distinctively upon a second stimulus. This training capacity might play key functions in developing an adequate innate immune response to the continuous exposure to bacteria. However, the mechanisms involved in induction of trained immunity by commensals remain mostly unexplored. A. muciniphila represents an attractive candidate to study the promotion of these long-term responses. Here, we show that priming of macrophages with live A. muciniphila enhances bacterial intracellular survival and decreases the release of pro- and anti-inflammatory signals, lowering the production of TNF and IL-10. Global transcriptional analysis of macrophages after a secondary exposure to the bacteria showed the transcriptional rearrangement underpinning the phenotype observed compared to acutely exposed cells, with the increased expression of genes related to phagocytic capacity and those involved in the metabolic adjustment conducing to innate immune training. Accordingly, key genes related to bacterial killing and pro-inflammatory pathways were downregulated. These data demonstrate the importance of specific bacterial members in the modulation of local long-term innate immune responses, broadening our knowledge of the association between gut microbiome commensals and trained immunity as well as the anti-inflammatory probiotic potential of A. muciniphila.


Assuntos
Inflamação , Verrucomicrobia , Humanos , Inflamação/genética , Verrucomicrobia/genética , Verrucomicrobia/metabolismo , Fenótipo , Anti-Inflamatórios/metabolismo , Akkermansia
2.
NPJ Biofilms Microbiomes ; 9(1): 74, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805634

RESUMO

Recent evidence demonstrates potential links between mitochondrial dysfunction and inflammatory bowel diseases (IBD). In addition, bidirectional interactions between the intestinal microbiota and host mitochondria may modulate intestinal inflammation. We observed previously that mice deficient in the mitochondrial protein MCJ (Methylation-controlled J protein) exhibit increased susceptibility to DSS colitis. However, it is unclear whether this phenotype is primarily driven by MCJ-/- associated gut microbiota dysbiosis or by direct effects of MCJ-deficiency. Here, we demonstrate that fecal microbiota transplantation (FMT) from MCJ-deficient into germ-free mice was sufficient to confer increased susceptibility to colitis. Therefore, an FMT experiment by cohousing was designed to alter MCJ-deficient microbiota. The phenotype resulting from complex I deficiency was reverted by FMT. In addition, we determined the protein expression pathways impacted by MCJ deficiency, providing insight into the pathophysiology of IBD. Further, we used magnetic activated cell sorting (MACS) and 16S rRNA gene sequencing to characterize taxa-specific coating of the intestinal microbiota with Immunoglobulin A (IgA-SEQ) in MCJ-deficient mice. We show that high IgA coating of fecal bacteria observed in MCJ-deficient mice play a potential role in disease progression. This study allowed us to identify potential microbial signatures in feces associated with complex I deficiency and disease progression. This research highlights the importance of finding microbial biomarkers, which might serve as predictors, permitting the stratification of ulcerative colitis (UC) patients into distinct clinical entities of the UC spectrum.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Colite Ulcerativa/genética , Colite Ulcerativa/microbiologia , RNA Ribossômico 16S/genética , Imunoglobulina A , Mitocôndrias/genética , Progressão da Doença
3.
Gut Microbes ; 15(2): 2266626, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37842919

RESUMO

Anti-TNF therapy can induce and maintain a remission status during intestinal bowel disease. However, up to 30% of patients do not respond to this therapy by mechanisms that are unknown. Here, we show that the absence of MCJ, a natural inhibitor of the respiratory chain Complex I, induces gut microbiota changes that are critical determinants of the lack of response in a murine model of DSS-induced inflammation. First, we found that MCJ expression is restricted to macrophages in human colonic tissue. Therefore, we demonstrate by transcriptomic analysis of colon macrophages from DSS-induced mice that MCJ-deficiency is linked to the expression of genes belonging to the FcγR signaling pathway and contains an anti-TNF refractory gene signature identified in ulcerative colitis patients. The gut microbial composition changes observed upon DSS treatment in the MCJ-deficient mice revealed the increased presence of specific colitogenic members, including Ruminococcus gnavus and Oscillospira, which could be associated with the non-response to TNF inhibitors. Further, we show that the presence of a microbiota associated resistance to treatment is dominant and transmissible to responsive individuals. Collectively, our findings underscore the critical role played by macrophage mitochondrial function in the gut ecological niche that can substantially affect not only the severity of inflammation but also the ability to successfully respond to current therapies.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Inibidores do Fator de Necrose Tumoral/efeitos adversos , Inibidores do Fator de Necrose Tumoral/metabolismo , Colite/induzido quimicamente , Microbioma Gastrointestinal/fisiologia , Colo/metabolismo , Inflamação/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
4.
Sci Rep ; 12(1): 9977, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705557

RESUMO

Inflammatory bowel disease (IBD) is a complex, chronic, relapsing and heterogeneous disease induced by environmental, genomic, microbial and immunological factors. MCJ is a mitochondrial protein that regulates the metabolic status of macrophages and their response to translocated bacteria. Previously, an acute murine model of DSS-induced colitis showed increased disease severity due to MCJ deficiency. Unexpectedly, we now show that MCJ-deficient mice have augmented tumor necrosis factor α converting enzyme (TACE) activity in the context of chronic inflammation. This adaptative change likely affects the balance between soluble and transmembrane TNF and supports the association of the soluble form and a milder phenotype. Interestingly, the general shifts in microbial composition previously observed during acute inflammation were absent in the chronic model of inflammation in MCJ-deficient mice. However, the lack of the mitochondrial protein resulted in increased alpha diversity and the reduction in critical microbial members associated with inflammation, such as Ruminococcus gnavus, which could be associated with TACE activity. These results provide evidence of the dynamic metabolic adaptation of the colon tissue to chronic inflammatory changes mediated by the control of mitochondrial function.


Assuntos
Colite , Complexo I de Transporte de Elétrons , Doenças Inflamatórias Intestinais , Fator de Necrose Tumoral alfa , Proteína ADAM17/metabolismo , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/metabolismo , Inflamação/patologia , Doenças Inflamatórias Intestinais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Gut Microbes ; 13(1): 1939598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34224309

RESUMO

Gut microbiota is a constant source of antigens and stimuli to which the resident immune system has developed tolerance. However, the mechanisms by which mononuclear phagocytes, specifically monocytes/macrophages, cope with these usually pro-inflammatory signals are poorly understood. Here, we show that innate immune memory promotes anti-inflammatory homeostasis, using as model strains of the commensal bacterium Lactiplantibacillus plantarum. Priming of monocytes/macrophages with bacteria, especially in its live form, enhances bacterial intracellular survival and decreases the release of pro-inflammatory signals to the environment, with lower production of TNF and higher levels of IL-10. Analysis of the transcriptomic landscape of these cells shows downregulation of pathways associated with the production of reactive oxygen species (ROS) and the release of cytokines, chemokines and antimicrobial peptides. Indeed, the induction of ROS prevents memory-induced bacterial survival. In addition, there is a dysregulation in gene expression of several metabolic pathways leading to decreased glycolytic and respiratory rates in memory cells. These data support commensal microbe-specific metabolic changes in innate immune memory cells that might contribute to homeostasis in the gut.


Assuntos
Imunidade Inata , Lactobacillaceae/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Adulto , Idoso , Animais , Peptídeos Antimicrobianos/imunologia , Feminino , Humanos , Memória Imunológica , Interleucina-10/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Microbiota , Pessoa de Meia-Idade , Monócitos/microbiologia , Células RAW 264.7 , Saliva/microbiologia , Simbiose
6.
Anim Microbiome ; 3(1): 28, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853683

RESUMO

BACKGROUND: The knowledge about blood circulating microbiome and its functional relevance in healthy individuals remains limited. An assessment of changes in the circulating microbiome was performed by sequencing peripheral blood mononuclear cells (PBMC) bacterial DNA from goats supplemented or not in early life with rumen liquid transplantation. RESULTS: Most of the bacterial DNA associated to PBMC was identified predominantly as Proteobacteria (55%) followed by Firmicutes (24%), Bacteroidetes (11%) and Actinobacteria (8%). The predominant genera found in PBMC samples were Pseudomonas, Prevotella, Sphingomonas, Acinetobacter, Corynebacterium and Ruminococcus. Other genera such as Butyrivibrivio, Bifidobacterium, Dorea and Coprococcus were also present in lower proportions. Several species known as blood pathogens or others involved in gut homeostasis such as Faecalibacterium prausnitzii were also identified. However, the PBMC microbiome phylum composition differed from that in the colon of goats (P ≤ 0.001), where Firmicutes was the predominant phylum (83%). Although, rumen liquid administration in early-life altered bacterial community structure and increased Tlr5 expression (P = 0.020) in colon pointing to higher bacterial translocation, less than 8% of OTUs in colon were also observed in PBMCs. CONCLUSIONS: Data suggest that in physiological conditions, PBMC microbiome differs from and is not affected by colon gut microbiota in small ruminants. Although, further studies with larger number of animals and covering other animal tissues are required, results point to a common circulating bacterial profile on mammals being phylum Proteobacteria, and genera Pseudomonas and Prevotella the most abundants. All suggest that PBMC microbiome in healthy ruminants could be implicated in homeostatic condition. This study expands our knowledge about PBMC microbiome contribution to health in farm animals.

7.
Sci Rep ; 10(1): 572, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953445

RESUMO

Recent evidences indicate that mitochondrial genes and function are decreased in active ulcerative colitis (UC) patients, in particular, the activity of Complex I of the electron transport chain is heavily compromised. MCJ is a mitochondrial inner membrane protein identified as a natural inhibitor of respiratory chain Complex I. The induction of experimental colitis in MCJ-deficient mice leads to the upregulation of Timp3 expression resulting in the inhibition of TACE activity that likely inhibits Tnf and Tnfr1 shedding from the cell membrane in the colon. MCJ-deficient mice also show higher expression of Myd88 and Tlr9, proinflammatory genes and disease severity. Interestingly, the absence of MCJ resulted in distinct microbiota metabolism and composition, including a member of the gut community in UC patients, Ruminococcus gnavus. These changes provoked an effect on IgA levels. Gene expression analyses in UC patients showed decreased levels of MCJ and higher expression of TIMP3, suggesting a relevant role of mitochondrial genes and function among active UC. The MCJ deficiency disturbs the regulatory relationship between the host mitochondria and microbiota affecting disease severity. Our results indicate that mitochondria function may be an important factor in the pathogenesis. All together support the importance of MCJ regulation during UC.


Assuntos
Bactérias/classificação , Colite Ulcerativa/genética , Disbiose/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Proteína ADAM17/genética , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Colite Ulcerativa/microbiologia , Modelos Animais de Doenças , Deleção de Genes , Regulação da Expressão Gênica , Humanos , Camundongos , Microbiota , Filogenia , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Índice de Gravidade de Doença , Inibidor Tecidual de Metaloproteinase-3/genética , Fator de Necrose Tumoral alfa/genética
8.
PLoS Pathog ; 15(11): e1008163, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31738806

RESUMO

Macrophages mediate the elimination of pathogens by phagocytosis resulting in the activation of specific signaling pathways that lead to the production of cytokines, chemokines and other factors. Borrelia burgdorferi, the causative agent of Lyme disease, causes a wide variety of pro-inflammatory symptoms. The proinflammatory capacity of macrophages is intimately related to the internalization of the spirochete. However, most receptors mediating this process are largely unknown. We have applied a multiomic approach, including the proteomic analysis of B. burgdorferi-containing phagosome-enriched fractions, to identify surface receptors that are involved in the phagocytic capacity of macrophages as well as their inflammatory output. Sucrose gradient protein fractions of human monocyte-derived macrophages exposed to B. burgdorferi contained the phagocytic receptor, CR3/CD14 highlighting the major role played by these proteins in spirochetal phagocytosis. Other proteins identified in these fractions include C-type lectins, scavenger receptors or Siglecs, of which some are directly involved in the interaction with the spirochete. We also identified the Fc gamma receptor pathway, including the binding receptor, CD64, as involved both in the phagocytosis of, and TNF induction in response to B. burgdorferi in the absence of antibodies. The common gamma chain, FcγR, mediates the phagocytosis of the spirochete, likely through Fc receptors and C-type lectins, in a process that involves Syk activation. Overall, these findings highlight the complex array of receptors involved in the phagocytic response of macrophages to B. burgdorferi.


Assuntos
Borrelia burgdorferi/imunologia , Doença de Lyme/imunologia , Ativação de Macrófagos/imunologia , Fagocitose/imunologia , Receptores de Superfície Celular/metabolismo , Animais , Citocinas/metabolismo , Doença de Lyme/metabolismo , Doença de Lyme/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteômica , Receptores de Superfície Celular/imunologia , Transdução de Sinais
9.
Emerg Microbes Infect ; 7(1): 19, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29511161

RESUMO

Macrophages are cells of the innate immune system with the ability to phagocytose and induce a global pattern of responses that depend on several signaling pathways. We have determined the biosignature of murine bone marrow-derived macrophages and human blood monocytes using transcriptomic and proteomic approaches. We identified a common pattern of genes that are transcriptionally regulated and overall indicate that the response to B. burgdorferi involves the interaction of spirochetal antigens with several inflammatory pathways corresponding to primary (triggered by pattern-recognition receptors) and secondary (induced by proinflammatory cytokines) responses. We also show that the Toll-like receptor family member CD180 is downregulated by the stimulation of macrophages, but not monocytes, with the spirochete. Silencing Cd180 results in increased phagocytosis while tempering the production of the proinflammatory cytokine TNF. Cd180-silenced cells produce increased levels of Itgam and surface CD11b, suggesting that the regulation of CD180 by the spirochete initiates a cascade that increases CR3-mediated phagocytosis of the bacterium while repressing the consequent inflammatory response.


Assuntos
Antígenos CD/imunologia , Borrelia burgdorferi/fisiologia , Doença de Lyme/genética , Macrófagos/imunologia , Animais , Antígenos CD/genética , Borrelia burgdorferi/genética , Citocinas/genética , Citocinas/imunologia , Humanos , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Macrófagos/química , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/química , Monócitos/imunologia , Monócitos/microbiologia , Fagocitose , Proteômica , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia
10.
Sci Rep ; 7(1): 10740, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878331

RESUMO

Salp15, a salivary protein of Ixodes ticks, inhibits the activation of naïve CD4 T cells. Treatment with Salp15 results in the inhibition of early signaling events and the production of the autocrine growth factor, interleukin-2. The fate of the CD4 T cells activated in the presence of Salp15 or its long-term effects are, however, unknown. We now show that Salp15 binding to CD4 is persistent and induces a long-lasting immunomodulatory effect. The activity of Salp15 results in sustained diminished cross-antigenic antibody production even after interruption of the treatment with the protein. Transcriptionally, the salivary protein provokes an acute effect that includes known activation markers, such as Il2 or Cd44, and that fades over time. The long-term effects exerted by Salp15 do not involve the induction of either anergy traits nor increased populations of regulatory T cells. Similarly, the treatment with Salp15 does not result in B cell anergy or the generation of myeloid suppressor cells. However, Salp15 induces the increased expression of the ectoenzyme, CD73, in regulatory T cells and increased production of adenosine. Our study provides a profound characterization of the immunomodulatory activity of Salp15 and suggests that its long-term effects are due to the specific regulation of CD73.


Assuntos
Tolerância Imunológica/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Imunossupressores/farmacologia , Proteínas e Peptídeos Salivares/farmacologia , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Hematopoese/efeitos dos fármacos , Hematopoese/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Imunoglobulina G/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...