Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiother Oncol ; 156: 136-144, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33310004

RESUMO

BACKGROUND AND PURPOSE: Gemcitabine is an antitumour agent currently used in the treatment of several types of cancer with known properties as a radiosensitizer. p38MAPK signalling pathway has been shown to be a major determinant in the cellular response to gemcitabine in different experimental models. However, the molecular mechanism implicated in gemcitabine-associated radiosensitivity remains unknown. MATERIALS AND METHODS: The human sarcoma cell lines A673 and HT1080, and a mouse cell line derived from a 3-methylcholanthrene induced sarcoma were used as experimental models. Modulation of p38MAPKs was performed by pharmacological approaches (SB203580) and genetic interference using lentiviral vectors coding for specific shRNAs. Viability was assessed by MTT. Gene expression was evaluated by western blot and RT-qPCR. Induction of apoptosis was monitored by caspase 3/7 activity. Response to ionizing radiation was evaluated by clonogenic assays. RESULTS: Our data demonstrate that chemical inhibition of p38MAPK signalling pathway blocks gemcitabine radiosensitizing potential. Genetic interference of MAPK14 (p38α), the most abundantly expressed and best characterized p38MAPK, despite promoting resistance to gemcitabine, it does not affect its radiosensitizing potential. Interestingly, specific knockdown of MAPK11 (p38ß) induces a total loss of the radiosensitivity associated to gemcitabine, as well as a marked increase in the resistance to the drug. CONCLUSION: The present work identifies p38ß as a major determinant of the radiosensitizing potential of gemcitabine without implication of p38α, suggesting that p38ß status should be analysed in those cases in which gemcitabine is combined with ionizing radiation.


Assuntos
Proteína Quinase 11 Ativada por Mitógeno , Sarcoma , Apoptose , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Humanos , Modelos Teóricos , Tolerância a Radiação/genética , Gencitabina
2.
Cancer Lett ; 451: 23-33, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30872077

RESUMO

Targeting cell cycle has become one of the major challenges in cancer therapy, being Palbociclib, a CDK4/6 inhibitor, an excellent example. Recently, it has been reported that Palbociclib could be a novel radiosensitizer agent. In an attempt to clarify the molecular basis of this effect we have used cell lines from colorectal (HT29, HCT116) lung (A549, H1299) and breast cancer (MCF-7). Our results indicate that the presence of a p53 wild type is strictly required for Palbociclib to exert its radiosensitizing effect, independently of the inhibitory effect exerted on CDK4/6. In fact, abrogation of p53 in cells with functional p53 blocks the radiosensitizing effect of Palbociclib. Moreover, no radiosensitizing effect is observed in cells with non-functional p53, but restoration of p53 function promotes radiosensitivity associated to Palbociclib. Furthermore, the presence of Palbociclib blocks the transcriptional activity of p53 in an ATM-dependent-fashion after ionizing radiation exposure, as the blockage of p21/WAF1 expression demonstrates. These observations are a proof of concept for a more selective therapy, based on the combination of CDK4/6 inhibition and radiotherapy, which would only benefit to those patients with a functional p53 pathway.


Assuntos
Piperazinas/farmacologia , Piridinas/farmacologia , Radiossensibilizantes/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Humanos , Transdução de Sinais/efeitos dos fármacos
3.
Clin Transl Oncol ; 21(9): 1280-1285, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30680609

RESUMO

PURPOSE: Autophagy has lately emerged as an important biological process with implications in several hematological pathologies. Recently, a growing body of evidence supports a putative role of autophagy in chronic lymphocytic leukemia; however, no definitive clue has been established so far. To elucidate this issue, we have developed a pilot study to measure autophagic flux in peripheral blood mononuclear cells from chronic lymphocytic leukemia patients, and explored its correlation with classical clinical/analytical parameters. METHODS/PATIENTS: Thirty-three chronic lymphocytic leukemia patients participated in the study. Autophagic flux in peripheral blood mononuclear cells was determined by western blot measuring the levels of the proteins p62 and lipidated LC3. Moreover, p62 mRNA levels were analyzed by RT-qPCR. RESULTS: Lymphocytosis and the percentage of tumoral lymphocytes in chronic lymphocytic leukemia patients statistically correlate with a blocked autophagic flux. CONCLUSION: Alterations in autophagic flux could play an important role in the physiopathology of chronic lymphocytic leukemia.


Assuntos
Autofagia , Biomarcadores Tumorais/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Leucócitos Mononucleares/patologia , Linfocitose/patologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucócitos Mononucleares/metabolismo , Linfocitose/metabolismo , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...