Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biosci ; 14(1): 69, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824560

RESUMO

Hepatocellular carcinoma (HCC) incidence is continuously increasing worldwide, due to the rise of metabolic dysfunction-associated steatohepatitis (MASH) cases. Cholesterol is an essential driver of the metabolic dysregulations that promote HCC progression. Liver X Receptor (LXR) is a nuclear receptor best known for the regulation of lipid and cholesterol homeostasis, with a prominent function in the liver and in the intestine. Here, we aimed to explore whether modifications in intestinal lipid metabolism may contribute to the onset of HCC, particularly taking into account cholesterol metabolism and LXRs. To study the progression of MASH to HCC, we induced metabolic HCC in wild-type male mice and mice carrying an intestinal chronic activation of LXRα. Also, we analysed human hepatic transcriptome datasets. The increased consumption of fat and carbohydrates drives the intestinal activation of LXRα and accelerates the onset of the hepatic tumours. Chronic intestinal-specific activation of LXRα enhances HCC progression only in the presence of a high cholesterol intake. In HCC, despite the increased hepatic cholesterol content, LXR is not active, thus driving liver cancer development. Intriguingly, in line with these results in the mouse model, LXR transcriptome is also downregulated in human hepatocarcinoma and its expression level in liver tumours directly correlates with a decreased survival rate in patients. Overall, our findings establish the relevance of the intestine in influencing the susceptibility to MASH-HCC and point to intestinal LXRα activation as a driver of metabolic liver cancer in the presence of dietary cholesterol.

2.
Cancers (Basel) ; 14(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35804854

RESUMO

The Farnesoid X Receptor (FXR) is the master regulator of Bile Acids (BA) homeostasis orchestrating their synthesis, transport and metabolism. Disruption of BA regulation has been linked to gut-liver axis diseases such as colorectal cancer (CRC). In this study, firstly we examined the role of constitutive activation of intestinal FXR in CRC; then we pre-clinically investigated the therapeutic potential of a diet enriched with a synthetic FXR agonist in two models of CRC (chemically-induced and genetic models). We demonstrated that mice with intestinal constitutive FXR activation are protected from AOM/DSS-induced CRC with a significant reduction of tumor number compared to controls. Furthermore, we evaluated the role of chemical FXR agonism in a DSS model of colitis in wild type (WT) and FXRnull mice. WT mice administered with the FXR activating diet showed less morphological alterations and decreased inflammatory infiltrates compared to controls. The FXR activating diet also protected WT mice from AOM/DSS-induced CRC by reducing tumors' number and size. Finally, we proved that the FXR activating diet prevented spontaneous CRC in APCMin/+ mice via an FXR-dependent modulation of BA homeostasis. Our results demonstrate that intestinal FXR activation prevented both inflammation- and genetically-driven colorectal tumorigenesis by modulating BA pool size and composition. This could open new avenues for the therapeutic management of intestinal inflammation and tumorigenesis.

3.
Commun Biol ; 5(1): 553, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672444

RESUMO

Several studies highlighted the importance of platelets in the tumor microenvironment due to their ability to interact with other cell types such as leukocytes, endothelial, stromal and cancer cells. Platelets can influence tumor development and metastasis formation through several processes consisting of the secretion of growth factors and cytokines and/or via direct interaction with cancer cells and endothelium. Patients with visceral obesity (VO) are susceptible to pro-thrombotic and pro-inflammatory states and to development of cancer, especially colon cancer. These findings provide us with the impetus to analyze the role of platelets isolated from VO patients in tumor growth and progression with the aim to explore a possible link between platelet activation, obesity and colon cancer. Here, using xenograft colon cancer models, we prove that platelets from patients with visceral obesity are able to strongly promote colon cancer growth. Then, sequencing platelet miRNome, we identify miR-19a as the highest expressed miRNA in obese subjects and prove that miR-19a is induced in colon cancer. Last, administration of miR-19a per se in the xenograft colon cancer model is able to promote colon cancer growth. We thus elect platelets with their specific miRNA abundance as important factors in the tumor promoting microenvironment of patients with visceral obesity.


Assuntos
Neoplasias do Colo , MicroRNAs , Plaquetas/metabolismo , Neoplasias do Colo/metabolismo , Humanos , MicroRNAs/genética , Obesidade Abdominal/complicações , Obesidade Abdominal/metabolismo , Obesidade Abdominal/patologia , Microambiente Tumoral
4.
Artigo em Inglês | MEDLINE | ID: mdl-34813947

RESUMO

Cardiometabolic risk factors increase the risk of atherosclerotic cardiovascular disease (ASCVD), but whether these metabolic anomalies affect the anti-atherogenic function of reverse cholesterol transport (RCT) is not yet clearly known. The present study aimed to delineate if the function and maturation of high density lipoprotein (HDL) particles cross-sectionally associate with surrogate markers of ASCVD in a population comprising of different degree of cardiometabolic risk. We enrolled 131 subjects and characterized cardiometabolic risk based on the IDF criteria's for metabolic syndrome (MS). In this population, cholesterol efflux capacity (CEC), Lecithin-cholesterol acyltransferase (LCAT) and ApoA-1 glycation was associated with waist circumference, abdominal visceral fat (VFA) and abdominal subcutaneous fat. In multivariate analyses, VFA was identified as a critical contributor for low CEC and LCAT. When stratified into groups based on the presence of cardiometabolic risk factors, we found a prominent reduction in CEC and LCAT as a function of the progressive increase of cardiometabolic risk from 0-2, 0-3 to 0-4/5, whereas an increase in Pre-ß-HDL and ApoA-1 glycation was observed between the lowest and highest risk groups. These findings confirm the connection between MS and its predisposing conditions to an impairment of atheroprotective efflux-promoting function of HDLs. Furthermore, we have identified the bona fide pathogenically contribution of abdominal obesity to profound alterations of key metrics of RCT.


Assuntos
Obesidade Abdominal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...