Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(8): 5022-5036, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38332782

RESUMO

Polyvinyl alcohol/yttrium oxide (PVA/Y2O3) nanocomposite films with five different weight ratios of PVA and Y2O3 nanoparticles (NPs) were prepared using a simple solution casting method. The prepared polymer nanocomposite (PNC) films were examined using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). FTIR spectra exhibited a strong interaction between the PVA matrix and Y2O3 NPs. SEM results indicated that Y2O3 NPs were properly dispersed in the PVA matrix. The thermal stability of the PVA/Y2O3 nanocomposite films was found to be dependent on Y2O3 NP loading (wt%) in the nanocomposite films. Furthermore, chemiresistive gas sensing properties of the PVA/Y2O3 nanocomposite films were evaluated and the sensing parameters including sensing response, operating temperature, selectivity, stability, response/recovery time, and repeatability were systematically investigated based on the change in electrical resistance of the nanocomposite film in the presence of carbon dioxide (CO2) gas. The maximum sensing response (S) of 92.72% at a concentration of 100 ppm under an optimized operating temperature of 100 °C with a fast response/recovery time of ∼15/11 s towards CO2 gas detection was observed for the PVA/Y2O3 nanocomposite film with 5 wt% loading of Y2O3 NPs in the PVA matrix. The finding in this work suggest that Y2O3 NPs are sufficiently fast as a CO2 gas sensing material at a relatively low operating temperature. Moreover, the key role of the Y2O3 NPs in modulating the electrical and gas sensing properties of the PVA matrix is discussed here.

2.
Langmuir ; 39(37): 13345-13358, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37679052

RESUMO

A simple solution casting technique was used to fabricate perovskite strontium titanate (SrTiO3)-loaded poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) nanocomposite films for efficient energy storage applications. Various microscopic and spectroscopic methods were used to study the characteristics of the polymer nanocomposite films, like Fourier transform infrared spectroscopy (FTIR), X-ray diffraction technique (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible spectroscopy, thermogravimetric analysis, and mechanical tensile test (stress vs strain). The FTIR, XRD, and FESEM analyses confirmed the incorporation and proper dispersion of SrTiO3 nanoparticles in the PVDF-HFP polymer matrix. An improvement in the optical, thermal, and mechanical behavior of the nanocomposite film was observed compared to the pure polymer. The values of dielectric constant, loss tangent, and AC conductivity of pure PVDF-HFP polymer and PVDF-HFP/SrTiO3 nanocomposites (2, 6, and 10 wt % SrTiO3 loadings) were analyzed in a temperature and frequency span of 30-150 °C and 1-100 kHz, respectively. To better understand the electrical properties of the materials, Nyquist plots were generated, and their related circuit designs were fitted. The 2 wt % SrTiO3 loaded nanocomposite exhibited the highest dielectric enhancement and AC conductivity compared to higher filler-loaded nanocomposites. This exceptional dielectric enhancement at very small filler loading is beneficial for commercialization and economically viable for real-time applications.

3.
Light Sci Appl ; 11(1): 250, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35945216

RESUMO

The global energy crisis is increasing the demand for innovative materials with high purity and functionality for the development of clean energy production and storage. The development of novel photo- and electrocatalysts significantly depends on synthetic techniques that facilitate the production of tailored advanced nanomaterials. The emerging use of pulsed laser in liquid synthesis has attracted immense interest as an effective synthetic technology with several advantages over conventional chemical and physical synthetic routes, including the fine-tuning of size, composition, surface, and crystalline structures, and defect densities and is associated with the catalytic, electronic, thermal, optical, and mechanical properties of the produced nanomaterials. Herein, we present an overview of the fundamental understanding and importance of the pulsed laser process, namely various roles and mechanisms involved in the production of various types of nanomaterials, such as metal nanoparticles, oxides, non-oxides, and carbon-based materials. We mainly cover the advancement of photo- and electrocatalytic nanomaterials via pulsed laser-assisted technologies with detailed mechanistic insights and structural optimization along with effective catalytic performances in various energy and environmental remediation processes. Finally, the future directions and challenges of pulsed laser techniques are briefly underlined. This review can exert practical guidance for the future design and fabrication of innovative pulsed laser-induced nanomaterials with fascinating properties for advanced catalysis applications.

4.
Environ Res ; 203: 111842, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34363804

RESUMO

Nickel oxide (NiO) nanoparticles (NPs) and graphene quantum dots (GQDs) reinforced polyvinyl alcohol (PVA) nanocomposite films were prepared using a solution casting technique. The physicochemical characteristics of PVA/NiO/GQDs (PNG) nanocomposite films were studied using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM). The obtained PNG nanocomposite films showed good mechanical flexibility and improved tensile strength. The influence of nanofiller concentrations on PNG nanocomposite film. The obtained results demonstrate an increase in the activation energy (Ea) up to PNG3 upon increasing the GQDs concentration and thereafter, its decreases. The fundamental interactions of the constituents of PNG nanocomposite film were investigated using density functional theory (DFT). This study on electronic structure reveals that the PVA model indirectly interacts with GQDs through the NiO model. This configuration is favoured in terms of interaction energy (-78 kJ/mol) compared to the one in which PVA interacts directly with the GQDs model.


Assuntos
Grafite , Nanocompostos , Nanopartículas , Pontos Quânticos , Níquel , Álcool de Polivinil , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Environ Res ; 204(Pt C): 112297, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34740623

RESUMO

PVDF-HFP/BaTiO3/GQDs polymer nanocomposite films with good flexibility and high dielectric constant (ϵ) at low frequency were prepared via solution casting technique. Different compositions of BaTiO3 (non-conducting ceramic nanofiller) and Graphene quantum dots (GQDs) (conducting nanofiller) utilized as co-filler were embedded in poly (vinylidene fluoride-co-hexafluoroethylene) (PVDF-HFP) polymer matrix. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Scanning electron microscopy (SEM) techniques were employed to characterize the prepared nanocomposite films. The mechanical properties of PVDF-HFP/BaTiO3/GQDs nanocomposite films were also investigated. Dielectric properties of nanocomposite films such as dielectric constant (ϵ), dielectric loss (tanδ) and AC conductivity ( σac ) were also determined as a function of frequency and temperature. Highest ϵ with relatively low tanδ obtained at low frequency for maximum temperature in all polymer nanocomposite films. The σac increases from lower (100 Hz) to higher frequency up to 100 kHz and drops to zero for the further increment of frequency. These results suggest that the PVDF-HFP/BaTiO3/GQDs nanocomposites are the most promising materials for energy storage applications.


Assuntos
Grafite , Nanocompostos , Nanopartículas , Pontos Quânticos , Bário , Grafite/química , Nanocompostos/química , Pontos Quânticos/química
6.
Environ Res ; 204(Pt D): 112359, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34774834

RESUMO

Removing decolorizing acid blue 113 (AB113) dye from textile wastewater is challenging due to its high stability and resistance to removal. In this study, we used an artificial neural network (ANN) model to estimate the effect of five different variables on AB113 dye removal in the sonophotocatalytic process. The five variables considered were reaction time (5-25 min), pH (3-11), ZnO dosage (0.2-1.0 g/L), ultrasonic power (100-300 W/L), and persulphate dosage (0.2-3 mmol/L). The most effective model had a 5-7-1 architecture, with an average deviation of 0.44 and R2 of 0.99. A sensitivity analysis was used to analyze the impact of different process variables on removal efficiency and to identify the most effective variable settings for maximum dye removal. Then, an imaginary sonophotocatalytic system was created to measure the quantitative impact of other process parameters on AB113 dye removal. The optimum process parameters for maximum AB 113 removal were identified as 6.2 pH, 25 min reaction time, 300 W/L ultrasonic power, 1.0 g/L ZnO dosage, and 2.54 mmol/L persulfate dosage. The model created was able to identify trends in dye removal and can contribute to future experiments.


Assuntos
Compostos Azo , Redes Neurais de Computação , Têxteis , Águas Residuárias
7.
Chemosphere ; 277: 130237, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34384171

RESUMO

In the present work, the cost effective and facile hydrothermal synthesis technique was adopted to synthesize the copper (׀׀) oxide (CuO)-Nanoparticles (NPs). Physico-chemical characterization of the synthesized CuO-NPs was done by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Ultraviolet-visible spectroscopy (UV-Vis), and scanning electron microscopy (SEM) analysis were carried out to study the structural, optical, and surface morphology of nanomaterial. XRD analysis revealed that the synthesized CuO-NPs had monoclinic structure and the average crystallite size is 20 nm. FTIR spectra indicate the vibrational bands of metal oxygen bonds (Cu-O). UV-visible absorption spectra were utilized to determine the energy band gap (Eg) of the CuO-NPs. In addition, we fabricated the chemiresistive sensor using synthesized CuO-NPs for detecting Volatile Organic Compounds (VOCs). These results demonstrate that CuO-NPs based chemiresistive sensor is ideal for qualitative detection of BTEX chemicals vapors (i.e. Benzene, Toluene, Ethylbenzene, and Xylene).


Assuntos
Cobre , Nanopartículas , Óxidos , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
8.
Environ Res ; 201: 111429, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34146527

RESUMO

Effective improvement of an easily recoverable photocatalyst is equally vital to its photocatalytic performance from a practical application view. The magnetically recoverable process is one of the easiest ways, provided the photocatalyst is magnetically strong enough to respond to an external magnetic field. Herein, we prepared graphitic carbon nitride nanosheet (g-C3N4), and ZnS quantum dots (QDs) supported ferromagnetic CoFe2O4 nanoparticles (NPs) as the gC3N4/ZnS/CoFe2O4 nanohybrid photocatalyst by a wet-impregnation method. The loading of CoFe2O4 NPs in the g-C3N4/ZnS nanohybrid resulted in extended visible light absorption. The ferromagnetic g-C3N4/ZnS/CoFe2O4 nanohybrid exhibited better visible-light-active photocatalytic performance (97.11%) against methylene blue (MB) dye, and it was easily separable from the aqueous solution by an external bar magnet. The g-C3N4/ZnS/CoFe2O4 nanohybrid displayed excellent photostability and reusability after five consecutive cycles. The favourable band alignment and availability of a large number of active sites affected the better charge separation and enhanced photocatalytic response. The role of active species involved in the degradation of MB dye during photocatalyst by g-C3N4/ZnS/CoFe2O4 nanohybrid was also investigated. Overall, this study provides a facile method for design eco-friendly and promising g-C3N4/ZnS/CoFe2O4 nanohybrid photocatalyst as applicable in the eco-friendly dye degradation process.


Assuntos
Iluminação , Nanocompostos , Catálise , Luz , Fotólise , Sulfetos , Compostos de Zinco
9.
Chemosphere ; 280: 130641, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33964741

RESUMO

Over the last few decades, various volatile organic compounds (VOCs) have been widely used in the processing of building materials and this practice adversely affected the environment i.e. both indoor and outdoor air quality. A cost-effective solution for detecting a wide range of VOCs by sensing approaches includes chemiresistive, optical and electrochemical techniques. Room temperature (RT) chemiresistive gas sensors are next-generation technologies desirable for self-powered or battery-powered instruments utilized in monitoring emissions that are associated with indoor/outdoor air pollution and industrial processes. In this review, a state-of-the-art overview of chemiresistive gas sensors is provided based on their attractive analytical characteristics such as high sensitivity, selectivity, reproducibility, rapid assay time and low fabrication cost. The review mainly discusses the recent advancement and advantages of graphene oxide (GO) nanocomposites-based chemiresistive gas sensors and various factors affecting their sensing performance at RT. Besides, the sensing mechanisms of GO nanocomposites-based chemiresistive gas sensors derived using metals, transition metal oxides (TMOs) and polymers were discussed. Finally, the challenges and future perspectives of GO nanocomposites-based RT chemiresistive gas sensors are addressed.


Assuntos
Grafite , Nanocompostos , Reprodutibilidade dos Testes , Temperatura
10.
Chemosphere ; 275: 129960, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33640745

RESUMO

The present work reports the preparation of polyvinyl formal (PVF)/Titanium dioxide (TiO2) nanocomposite films using a solution casting method followed by the characterization of the synthesized PVF/TiO2 nanocomposite films using various analytical techniques namely FTIR, XRD, UV-vis, SEM and TGA analysis. The results obtained from different analyses confirmed that the TiO2 NPs was fine dispersed within the PVF matrix and there exists well compatibility among the polymer matrix and the nanofiller. The pristine TiO2 NPs based fabricated chemiresistive sensor exhibits the maximum sensitivity of 50.25% at 370 °C where as PVF/TiO2 nanocomposite sensor showed the enhanced sensitivity of 83.75% at a relatively low operating temperature of 150 °C towards 600 ppm sulfur dioxide (SO2) gas. The 25 wt% PVF/TiO2 nanocomposite film sensor exhibited good sensitivity (∼83.75%), selectivity, rapid response time (66 s)/recovery time (107 s), and long-term stability of 60 days for SO2 gas detection. The fabricated PVF/TiO2 nanocomposite film sensors in our work possesses the advantages of low power consumption, cost-effective, and distinguished sensing abilities for SO2 detection makes it possible for potential applications. Thus, the fabricated chemiresistive sensors based on TiO2 NPs reinforced PVF nanocomposites films are evaluated and experimental results to show an excellent behavior towards SO2 gas detection for industrial processes control and environmental monitoring applications.


Assuntos
Nanocompostos , Nanopartículas , Polivinil , Dióxido de Enxofre , Titânio
11.
Chemosphere ; 272: 129901, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33607492

RESUMO

Modifying the structures and doping are proven to be effective methods to tune the structural and electrical properties of g-C3N4 quantum dots. Hence, in this study, tri-s-triazine and tri-nitro tri-s-triazine have been studied by functionalizing their edges with hydrogen. The H-functionalized tri-nitro tri-s-triazine quantum dot displays a buckled structure with a band gap of 1.988 eV, whereas the tri-s-triazine demonstrates a planner structure with a band gap of 1.636 eV. The obtained results have been compared with the previous results. The absorbance spectrum of H-functionalized trinitro tri-s-triazine falls under the visible region with a peak value of 488 nm, and the absorption spectrum of tri-s-triazine falls at 790 nm. The planarity of the tri-nitro tri-s-triazine structure is improved by doping the B atom in the N site, and the band gap of H-functionalized B doped tri-nitro tri-s-triazine is 1.143 eV. The absorbance spectrum of H-functionalized B doped tri-nitro tri-s-triazine is 508 nm. The reactivity of the structure is increased by doping B atoms, and it is confirmed by the electrophilicity index. Similarly, the H-functionalized B doped tri-s-triazine exhibits a band gap of 1.328 eV. Further, the tri-s-triazine structures are arranged in ternary form, and the properties are studied by increasing the number of B atoms in the tri-s-triazine rings. The outcome presents that the structures are planar, and band gap values are reduced further. Also, the reactivity of the sheets is increased, which is confirmed by the electrophilicity index. It is proposed that the sheets with a high reactivity can be used for the removal of hazardous ions and molecules from the industrial wastage.


Assuntos
Grafite , Pontos Quânticos , Hidrogênio , Íons , Triazinas
12.
Chemosphere ; 273: 129687, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33497986

RESUMO

Easily recyclable photocatalysts have received considerable attention for their practical application, in order to address the wastewater treatments. Here, we report efficient and magnetically recyclable ZnS-WO3-CoFe2O4 nanohybrid prepared through wet impregnation method. The photophysical and optical properties of as-prepared photocatalysts was investigated by different spectroscopic techniques. The photocatalytic activity of as synthesized samples were assessed by the photodegradation of methylene blue (MB) dye under visible light irradiation. Amongst, ZnS-WO3-CoFe2O4 nanohybrid exhibit higher photodegradation activity than the other bare and hybrid samples. The enhanced light absorption and lower emission intensity provide the improved photocatalytic activity of ZnS-WO3-CoFe2O4 nanohybrid. The ZnS-WO3-CoFe2O4 nanohybrid exhibit excellent photostability after four consecutive cycles. The ferromagnetic behavior of the hybrid sample using easily recover from the dye solution using an external bar magnet.


Assuntos
Azul de Metileno , Compostos de Zinco , Catálise , Luz , Sulfetos
13.
RSC Adv ; 10(40): 23861-23898, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35517370

RESUMO

Graphene quantum dots (GQDs) are an attractive nanomaterial consisting of a monolayer or a few layers of graphene having excellent and unique properties. GQDs are endowed with the properties of both carbon dots (CDs) and graphene. This review addresses applications of GQD based materials in sensing, bioimaging and energy storage. In the first part of the review, different approaches of GQD synthesis such as top-down and bottom-up synthesis methods have been discussed. The prime focus of this review is on green synthesis methods that have also been applied to the synthesis of GQDs. The GQDs have been discussed thoroughly for all the aspects along with their potential applications in sensors, biomedicine, and energy storage systems. In particular, emphasis is given to popular applications such as electrochemical and photoluminescence (PL) sensors, electrochemiluminescence (ECL) sensors, humidity and gas sensors, bioimaging, lithium-ion (Li-ion) batteries, supercapacitors and dye-sensitized solar cells. Finally, the challenges and the future perspectives of GQDs in the aforementioned application fields have been discussed.

14.
Mater Sci Eng C Mater Biol Appl ; 98: 1210-1240, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30813004

RESUMO

Polymer composites have established an excellent position among the technologically essential materials because of their wide range of applications. An enormous research interest has been devoted to zinc oxide (ZnO) based polymer nanocomposites, due to their exceptional electrical, optical, thermal, mechanical, catalytic, and biomedical properties. This article provides a review of various polymer composites consisting of ZnO nanoparticles (NPs) as reinforcements, exhibiting excellent properties for applications such as the dielectric, sensing, piezoelectric, electromagnetic shielding, thermal conductivity and energy storage. The preparation methods of such composites including solution blending, in situ polymerization, and melt intercalation are also explained. The current challenges and potential applications of these composites are provided in order to guide future progress on the development of more promising materials. Finally, a detailed summary of the current trends in the field is presented to progressively show the future prospects for the development of ZnO containing polymer nanocomposite materials.


Assuntos
Nanocompostos/química , Nanopartículas/química , Polímeros/química , Óxido de Zinco/química , Humanos , Polimerização
15.
J Nanosci Nanotechnol ; 18(8): 5454-5460, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29458598

RESUMO

Cr2O3-SnO2 heterojunction nanocomposites were prepared via chemical precipitation method. The prepared samples were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectra and Field Emission Electron Microscopy (FESEM). The XRD spectrum confirms the presence of both tetragonal rutile SnO2 and rhombohedral corundum Cr2O3 structure. Further investigation into the gas sensing performances of the prepared Cr2O3-SnO2 nanocomposites exhibited an enhanced sensitivity towards VOPs such as isopropanol, acetone, ethanol and formaldehyde. Especially, isopropanol vapor sensor shows excellent sensitivity at an operating temperature of 100 °C. The highest sensitivity for Cr2O3-SnO2 heterojunction nanocomposites indicate that these materials can be a good candidate for the production of high-performance isopropanol sensors.

16.
Dalton Trans ; 43(31): 11855-61, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24962062

RESUMO

We report a strategy for fabrication of 3D triangular GaN nano prism islands (TGNPI) grown on Ga/Si(553) substrate at low temperature by N2(+) ions implantation using a sputtering gun technique. The annealing of Ga/Si(553) (600 °C) followed by nitridation (2 keV) shows the formation of high quality GaN TGNPI cross-section. TGNPI morphology has been confirmed by atomic force microscopy. Furthermore, these nano prism islands exhibit prominent ultra-violet luminescence peaking at 366 nm upon 325 nm excitation wavelength along with a low intensity yellow luminescence broad peak at 545 nm which characterizes low defects density TGNPI. Furthermore, the time-resolved spectroscopy of luminescent TGNPI in nanoseconds holds promise for its futuristic application in next generation UV-based sensors as well as many portable optoelectronic devices.

17.
Euro Surveill ; 19(23)2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24957745

RESUMO

Antibodies to Middle East respiratory syndrome coronavirus (MERS-CoV) were detected in serum and milk collected according to local customs from 33 camels in Qatar, April 2014. At one location, evidence for active virus shedding in nasal secretions and/or faeces was observed for 7/12 camels; viral RNA was detected in milk of five of these seven camels. The presence of MERS-CoV RNA in milk of camels actively shedding the virus warrants measures to prevent putative food-borne transmission of MERS-CoV.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Camelus/sangue , Coronavirus/genética , Coronavirus/imunologia , Leite/virologia , RNA Viral/genética , Animais , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , Características Culturais , Doenças Transmitidas por Alimentos/prevenção & controle , Catar , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...