Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Rapid Commun Mass Spectrom ; 19(6): 785-97, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15714596

RESUMO

In the course of a liquid secondary ion mass spectrometric (SIMS) investigation on a bisquaternary ammonium antimicrobial agent, decamethoxinum, unusual pathways of fragmentation of the organic dication M2+ of this bisquaternary salt, with preservation of the doubly charged state of the fragments, were observed. To reveal the structural and electronic parameters of decamethoxinum, which are responsible for the stabilization of its organic dication in the gas phase, a comprehensive SIMS study using metastable decay, collision-induced dissociation and kinetic energy release techniques complemented by ab initio quantum chemical calculations was performed. Pathways of fragmentation of two main precursors originating from decamethoxinum-organic dication M2+ and its cluster with a Cl- counterion [M.Cl]+-and a number of their primary fragments were established and systematized. Differences in the pathways of fragmentation of M2+ and [M.Cl]+ were revealed: the main directions of [M.Cl]+ decay involve dequaternization similar to thermal degradation of this compound, while in M2+ fragmentation via loss of one and two terminal radicals with preservation of the doubly charged state of the fragments dominates over charge separation processes. It was shown that pairing of the dication with a Cl- anion does not preserve the complex from fragmentation via separation of two positively charged centers or neutralization (dequaternization) of one such center. At the same time the low abundance of M2+ in the SIMS spectra is to a larger extent controlled by a probability of M2+ association with an anion than by the decay of the dication per se. Quantum chemical calculations of the structural and electronic parameters of the decamethoxinum dication have revealed at least three features which can provide stabilization of the doubly charged state. Firstly, in the most energetically favorable stretch conformation the distance between the quaternary nitrogens (rN1-N2=1.39 nm) is relatively large. Secondly, an intramolecular solvation of quaternary groups by carbonyl oxygens of the adjacent groups of the dication occurs, which contribute to structural stabilization. Thirdly, an important feature of the electronic structure of the dication is the presence of a partial negative charge on the nitrogen atoms and smearing of a positive charge mainly over the hydrogens of alkyl groups attached to the quaternary nitrogens, which reduces the net repulsion between the quaternary groups. The possible influence of charge smearing on the kinetic energy released on the dication fragmentation is discussed.


Assuntos
Cromatografia Líquida/métodos , Ésteres/análise , Ésteres/química , Modelos Químicos , Modelos Moleculares , Compostos Orgânicos/química , Compostos de Amônio Quaternário/análise , Compostos de Amônio Quaternário/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Anti-Infecciosos/análise , Anti-Infecciosos/química , Cátions Bivalentes , Simulação por Computador , Reprodutibilidade dos Testes , Sais/análise , Sais/química , Sensibilidade e Especificidade
4.
J Am Soc Mass Spectrom ; 15(8): 1181-90, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15276165

RESUMO

In this study, we demonstrate, using electrospray ionization mass spectrometry (ESI-MS) and collision-induced dissociation tandem mass spectrometry (ESI-MS/CID/MS), that stable noncovalent complexes can be formed between Fe(III)-heme and antimalarial agents, i.e., quinine, artemisinin, and the artemisinin derivatives, dihydroartemisinin, alpha- and beta-artemether, and beta-arteether. Differences in the binding behavior of the examined drugs with Fe(III)-heme and the stability of the drug-heme complexes are demonstrated. The results show that all tested antimalarial agents form a drug-heme complex with a 1:1 stoichiometry but that quinine also results in a second complex with the heme dimer. ESI-MS performed on mixtures of pairs of various antimalarial agents with heme indicate that quinine binds preferentially to Fe(III)-heme, while ESI-MS/CID/MS shows that the quinine-heme complex is nearly two times more stable than the complexes formed between heme and artemisinin or its derivatives. Moreover, it is found that dihydroartemisinin, the active metabolite of the artemisinin-type drugs in vivo, results in a Na(+)-containing heme-drug complex, which is as stable as the heme-quinine complex. The efficiency of drug-heme binding of artemisinin derivatives is generally lower and the decomposition under CID higher compared with quinine, but these parameters are within the same order of magnitude. These results suggest that the efficiency of antimalarial agents of the artemisinin-type to form noncovalent complexes with Fe(III)-heme is comparable with that of the traditional antimalarial agent, quinine. Our study illustrates that electrospray ionization mass spectrometry and collision-induced dissociation tandem mass spectrometry are suitable tools to probe noncovalent interactions between heme and antimalarial agents. The results obtained provide insights into the underlying molecular modes of action of the traditional antimalarial agent quinine and of the antimalarials of the artemisinin-type which are currently used to treat severe or multidrug-resistant malaria.


Assuntos
Antimaláricos/química , Artemisininas/química , Heme/química , Sesquiterpenos/química , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Ciclotrons
5.
Science ; 303(5661): 1173-6, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14976309

RESUMO

Detailed organic analysis of natural aerosols from the Amazonian rain forest showed considerable quantities of previously unobserved polar organic compounds, which were identified as a mixture of two diastereoisomeric 2-methyltetrols: 2-methylthreitol and 2-methylerythritol. These polyols, which have the isoprene skeleton, can be explained by OH radical-initiated photooxidation of isoprene. They have low vapor pressure, allowing them to condense onto preexisting particles. It is estimated that photooxidation of isoprene results in an annual global production of about 2 teragrams of the polyols, a substantial fraction of the Intergovernmental Panel on Climate Change estimate of between 8 and 40 teragrams per year of secondary organic aerosol from biogenic sources.

6.
J Mass Spectrom ; 37(12): 1249-57, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12489085

RESUMO

We developed and validated a gas chromatographic/ion trap mass spectrometric method for the determination of levoglucosan and the related monosaccharide anhydrides, mannosan, galactosan and 1,6-anhydro-beta-D-glucofuranose in urban atmospheric aerosols collected on quartz fiber filters. The method is based on extraction with dichloromethane-methanol (80 : 20, v/v), trimethylsilylation, multiple reaction monitoring in the tandem mass spectrometric mode using the ion at m/z 217, and the use of an internal standard calibration procedure with the structurally related compound methyl beta-L-arabinopyranoside. In addition, the method allows the quantification of other saccharidic compounds, arabitol, mannitol, glucose, fructose, inositol and sucrose, which were found to be important in summer aerosols. The recovery of levoglucosan was estimated by spiking blank filters and was better than 90%. The precision evaluated by analyzing parts of the same filters was about 2% for the monosaccharide anhydrides and 7% for the other saccharidic compounds in the case of a winter aerosol sample, and the corresponding values for a summer aerosol sample were 5% and 8%. The method was applied to urban PM(10) (particulate matter of <10 microm aerodynamic diameter) aerosols collected at Ghent, Belgium, during a 2000-2001 winter and a 2001 summer episode and revealed interesting seasonal variations. While monosaccharide anhydrides were relatively more important during the winter season owing to wood burning, the other saccharidic compounds were more prevalent during the summer season, with some of them, if not all, originating from the vegetation.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Galactose/análogos & derivados , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glucose/análogos & derivados , Glucose/análise , Manose/análogos & derivados , Monossacarídeos/análise , Aerossóis/química , Cidades , Galactose/análise , Galactose/química , Glucose/química , Manose/análise , Manose/química , Monossacarídeos/química , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...