Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 123(3): 438-448, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32390004

RESUMO

BACKGROUND: Malignant tumours release factors, which attract myeloid cells and induce their polarisation to pro-invasive, immunosuppressive phenotypes. Brain-resident microglia and peripheral macrophages accumulate in the tumour microenvironment of glioblastoma (GBM) and induce immunosuppression fostering tumour progression. Macrophage colony stimulating factors (CSFs) control the recruitment of myeloid cells during peripheral cancer progression, but it is disputable, which CSFs drive their accumulation in gliomas. METHODS: The expression of CSF2 (encoding granulocyte-macrophage colony stimulating factor) was determined in TCGA datasets and five human glioma cell lines. Effects of stable CSF2 knockdown in glioma cells or neutralising CSF2 or receptor CSF2Rα antibodies on glioma invasion were tested in vitro and in vivo. RESULTS: CSF2 knockdown or blockade of its signalling reduced microglia-dependent glioma invasion in microglia-glioma co-cultures. CSF2-deficient human glioma cells encapsulated in cell-impermeable hollow fibres and transplanted to mouse brains, failed to attract microglia, but stimulated astrocyte recruitment. CSF2-depleted gliomas were smaller, attracted less microglia and macrophages, and provided survival benefit in tumour-bearing mice. Apoptotic microglia/macrophages were detected in CSF2-depleted tumours. CONCLUSIONS: CSF2 is overexpressed in a subset of mesenchymal GBMs in association with high immune gene expression. Tumour-derived CSF2 attracts, supports survival and induces pro-tumorigenic polarisation of microglia and macrophages.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Células Mieloides/patologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Bases de Dados Genéticas , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioma/genética , Glioma/metabolismo , Humanos , Células Jurkat , Masculino , Camundongos , Células Mieloides/metabolismo , Invasividade Neoplásica , Transplante de Neoplasias , Regulação para Cima
2.
Int J Mol Sci ; 21(3)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019108

RESUMO

Integrins are a large family of transmembrane adhesion receptors, which play a key role in interactions of a cell with the surrounding stroma. Integrins are comprised of non-covalently linked α and ß chains, which form heterodimeric receptor complexes. The signals from integrin receptors are combined with those originating from growth factor receptors and participate in orchestrating morphological changes of cells, organization of the cytoskeleton, stimulation of cell proliferation and rescuing cells from programmed cell death induced by extracellular matrix (ECM) detachment. Upon binding to specific ligands or ECM components, integrin dimers activate downstream signaling pathways, including focal adhesion kinase, phosphoinositide-3-kinase (PI3K) and AKT kinases, which regulate migration, invasion, proliferation and survival. Expression of specific integrins is upregulated in both tumor cells and stromal cells in a tumor microenvironment. Therefore, integrins became an attractive therapeutic target for many cancers, including the most common primary brain tumors-gliomas. In this review we provide an overview of the involvement of integrin signaling in glioma pathogenesis, formation of the tumor niche and brain tissue infiltration. We will summarize up-to-date therapeutic strategies for gliomas focused on interference with integrin ligand-receptor signaling.


Assuntos
Glioma/genética , Integrinas/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Transdução de Sinais , Microambiente Tumoral , Encéfalo/metabolismo , Proliferação de Células , Matriz Extracelular/metabolismo , Glioma/metabolismo , Integrinas/genética , Ligantes , Complexo Glicoproteico GPIb-IX de Plaquetas/genética
3.
Front Immunol ; 9: 1329, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29963047

RESUMO

Immune cells accumulating in the microenvironment of malignant tumors are tumor educated and contribute to its growth, progression, and evasion of antitumor immune responses. Glioblastoma (GBM), the common and most malignant primary brain tumor in adults, shows considerable accumulation of resident microglia and peripheral macrophages, and their polarization into tumor-supporting cells. There are controversies regarding a functional phenotype of glioma-associated microglia/macrophages (GAMs) due to a lack of consistent markers. Previous categorization of GAM polarization toward the M2 phenotype has been found inaccurate because of oversimplification of highly complex and heterogeneous responses. In this study, we characterized functional responses and gene expression in mouse and human microglial cultures exposed to fresh conditioned media [glioma-conditioned medium (GCM)] from human U87 and LN18 glioma cells. Functional analyses revealed mutual communication reflected by strong stimulation of glioma invasion by microglial cells and increased microglial phagocytosis after GCM treatment. To define transcriptomic markers of GCM-activated microglia, we performed selected and global gene expression analyses of stimulated microglial cells. We found activated pathways associated with immune evasion and TGF signaling. We performed computational comparison of the expression patterns of GAMs from human GBMs and rodent experimental gliomas to select genes consistently changed in different datasets. The analyses of marker genes in GAMs from different experimental models and clinical samples revealed only a small set of common genes, which reflects variegated responses in clinical and experimental settings. Tgm2 and Gpnmb were the only two genes common in the analyzed data sets. We discuss potential sources of the observed differences and stress a great need for definitive elucidation of a functional state of GAMs.

4.
Postepy Biochem ; 64(2): 129-140, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30656895

RESUMO

Growing evidence supports a critical role of the tumor-reprogrammed stromal cells in tumor growth and progression. Several extracellular communication networks are hijacked by the tumors to influence the surrounding tumor microenvironment. In malignant gliomas, tumor derived factors attract brain resident microglia and peripheral macrophages. These cells, instead of initiating antitumor responses, are re-educated by tumor cells and participate in matrix remodeling, support invasion and angiogenesis, and induce immunosuppression. Molecular underlining of these mutual and complex interactions in malignant gliomas is the main scope of this review.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Microambiente Tumoral , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Glioma/imunologia , Glioma/patologia , Humanos , Macrófagos/imunologia , Macrófagos/patologia , Microglia/imunologia , Microglia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...