Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 17(1): 953, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27875982

RESUMO

BACKGROUND: The Rhynchosporium species complex consists of hemibiotrophic fungal pathogens specialized to different sweet grass species including the cereal crops barley and rye. A sexual stage has not been described, but several lines of evidence suggest the occurrence of sexual reproduction. Therefore, a comparative genomics approach was carried out to disclose the evolutionary relationship of the species and to identify genes demonstrating the potential for a sexual cycle. Furthermore, due to the evolutionary very young age of the five species currently known, this genus appears to be well-suited to address the question at the molecular level of how pathogenic fungi adapt to their hosts. RESULTS: The genomes of the different Rhynchosporium species were sequenced, assembled and annotated using ab initio gene predictors trained on several fungal genomes as well as on Rhynchosporium expressed sequence tags. Structures of the rDNA regions and genome-wide single nucleotide polymorphisms provided a hypothesis for intra-genus evolution. Homology screening detected core meiotic genes along with most genes crucial for sexual recombination in ascomycete fungi. In addition, a large number of cell wall-degrading enzymes that is characteristic for hemibiotrophic and necrotrophic fungi infecting monocotyledonous hosts were found. Furthermore, the Rhynchosporium genomes carry a repertoire of genes coding for polyketide synthases and non-ribosomal peptide synthetases. Several of these genes are missing from the genome of the closest sequenced relative, the poplar pathogen Marssonina brunnea, and are possibly involved in adaptation to the grass hosts. Most importantly, six species-specific genes coding for protein effectors were identified in R. commune. Their deletion yielded mutants that grew more vigorously in planta than the wild type. CONCLUSION: Both cryptic sexuality and secondary metabolites may have contributed to host adaptation. Most importantly, however, the growth-retarding activity of the species-specific effectors suggests that host adaptation of R. commune aims at extending the biotrophic stage at the expense of the necrotrophic stage of pathogenesis. Like other apoplastic fungi Rhynchosporium colonizes the intercellular matrix of host leaves relatively slowly without causing symptoms, reminiscent of the development of endophytic fungi. Rhynchosporium may therefore become an object for studying the mutualism-parasitism transition.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Genoma Fúngico , Genômica , Especificidade de Hospedeiro , Filogenia , Poaceae/microbiologia , Sequência de Aminoácidos , Ascomicetos/metabolismo , DNA Intergênico , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Genômica/métodos , Família Multigênica , Metabolismo Secundário/genética
2.
FEMS Microbiol Lett ; 344(2): 179-85, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23678994

RESUMO

Phytophthora lateralis is a fungus-like (oomycete) pathogen of trees in the family Cupressaceae, including Chamaecyparis lawsoniana (Lawson cypress or Port Orford cedar). Known in North America since the 1920s, presumably having been accidentally introduced from its assumed East Asian centre of origin, until recently, this pathogen has not been identified causing disease in Europe except for a few isolated outbreaks. However, since 2010, there have been several reports of infection of C. lawsoniana by P. lateralis in the United Kingdom, including Northern Ireland. We sequenced the genomes of four isolates of P. lateralis from two sites in Northern Ireland in 2011. Comparison with the closely related tree and shrub pathogen P. ramorum (cause of ramorum disease of larch and other species in the UK) shows that P. lateralis shares 91.47% nucleotide sequence identity over the core conserved compartments of the genome. The genomes of the four Northern Ireland isolates are almost identical, but we identified several single-nucleotide polymorphisms (SNPs) that distinguish between isolates, thereby presenting potential molecular markers of use for tracking routes of spread and in epidemiological studies. Our data reveal very low rates of heterozygosity (compared with P. ramorum), consistent with inbreeding within this P. lateralis population.


Assuntos
Chamaecyparis/parasitologia , Variação Genética , Phytophthora/genética , Phytophthora/isolamento & purificação , Doenças das Plantas/parasitologia , Genoma , Irlanda , Dados de Sequência Molecular , Filogenia , Phytophthora/classificação , Análise de Sequência de DNA , Árvores/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...