Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutr Cycl Agroecosyst ; 116(3): 397-408, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765186

RESUMO

Sub-Saharan Africa is facing food security challenges due, in part, to decades of soil nitrogen (N) depletion. Applying N fertilizer could increase crop yields and replenish soil N pools. From 2010 to 2015, field experiments conducted in Embu and Kiboko, Kenya and Harare, Zimbabwe investigated yield and N uptake response of six maize (Zea mays L.) hybrids to four N fertilizer rates (0 to 160 kg N ha-1) in continuous maize production systems. The N recovery efficiency (NRE), cumulative N balance, and soil N content in the upper 0.9 m of soil following the final harvest were determined at each N rate. Plant and soil responses to N fertilizer applications did not differ amongst hybrids. Across locations and N rates, NRE ranged from 0.4 to 1.8 kg kg-1. Higher NRE values in Kiboko and Harare occurred at lower post-harvest soil inorganic N levels. The excessively high NRE value of 1.8 kg kg-1 at 40 kg N ha-1 in Harare suggested that maize hybrids deplete soil inorganic N most at low N rates. Still, negative cumulative N balances indicated that inorganic soil N depletion occurred at all N rates in Embu and Harare (up to - 193 and - 167 kg N ha-1, respectively) and at the 40 kg N ha-1 rate in Kiboko (- 72 kg N ha-1). Overall, maize N uptake exceeded fertilizer N applied and so, while yields increased, soil N pools were not replenished, especially at low total soil N levels (< 10,000 kg N ha-1 in top 0.9 m).

2.
Front Plant Sci ; 11: 62, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117398

RESUMO

Despite the detrimental impact that excess moisture can have on soybean (Glycine max [L.] Merr) yields, most of today's crop models do not capture soybean's dynamic responses to waterlogged conditions. In light of this, we synthesized literature data and used the APSIM software to enhance the modeling capacity to simulate plant growth, development, and N fixation response to flooding. Literature data included greenhouse and field experiments from across the U.S. that investigated the impact of flood timing and duration on soybean. Five datasets were used for model parameterization of new functions and three datasets were used for testing. Improvements in prediction accuracy were quantified by comparing model performance before and after the implementation of new stage-dependent excess water functions for phenology, photosynthesis and N-fixation. The relative root mean square error (RRMSE) for yield predictions improved by 26% and the RRMSE predictions of biomass improved by 40%. Extensive model testing found that the improved model accurately simulates plant responses to flooding including how these responses change with flood timing and duration. When used to project soybean response to future climate scenarios, the model showed that intense rain events had a greater negative effect on yield than a 25% increase in rainfall distributed over 1 or 3 month(s). These developments advance our ability to understand, predict and, thereby, mitigate yield loss as increases in climatic volatility lead to more frequent and intense flooding events in the future.

3.
Nutr Cycl Agroecosyst ; 115(3): 373-389, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32684799

RESUMO

Low fertilizer application rates for several decades have depleted soil nutrients in Sub-Saharan Africa (SSA) and contributed to relatively stagnant maize (Zea mays L.) yields. As maize is a staple crop, nutrient depletion has resulted in major food insecurity. While one potential solution is to apply more nitrogen (N) fertilizer, previous studies in SSA have found maize yield responses to be variable, likely because N is often not the only limiting nutrient. This study aimed to determine the impact of consecutive N fertilizer applications on plant uptake and available soil reserves of non-N nutrients. Maize was grown continuously in 3 sites that were representative of the ecosystem variability found in East/Southern Africa (Embu, Kenya; Kiboko, Kenya; Harare, Zimbabwe) at 4 different N fertilizer rates (0-160 kg N ha-1) from 2010 to 2015. Following the final season, grain, stover, and soil (sampled at different depths to 0.9 m) samples were analyzed for essential plant nutrients. Nitrogen fertilizer increased plant uptake of P, S, Cu, and Zn by up to 280%, 320%, 420%, and 210%, respectively, showing potential for mitigating non-N nutrient deficiencies in 2 of the 3 sites. Cumulatively, however, there was a net negative effect of higher N rates on the P, K, and S soil-plant balances in all sites and on the Mn and Cu soil-plant balance in Kiboko, indicating that applying N fertilizer depletes non-N soil nutrients. While N fertilizer enhances the uptake of non-N nutrients, a balanced application of multiple essential nutrients is needed to sustainably increase yields in SSA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...