Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oral Health ; 3: 851786, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464779

RESUMO

Candida albicans and Staphylococcus aureus account for most invasive fungal and bacterial bloodstream infections (BSIs), respectively. However, the initial point of invasion responsible for S. aureus BSIs is often unclear. Recently, C. albicans has been proposed to mediate S. aureus invasion of immunocompromised hosts during co-colonization of oral mucosal surfaces. The status of the oral immune system crucially contributes to this process in two distinct ways: firstly, by allowing invasive C. albicans growth during dysfunction of extra-epithelial immunity, and secondly following invasion by some remaining function of intra-epithelial immunity. Immunocompromised individuals at risk of developing invasive oral C. albicans infections could, therefore, also be at risk of contracting concordant S. aureus BSIs. Considering the crucial contribution of both oral immune function and dysfunction, the aim of this review is to provide an overview of relevant aspects of intra and extra-epithelial oral immunity and discuss predominant immune deficiencies expected to facilitate C. albicans induced S. aureus BSIs.

2.
J Vis Exp ; (146)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31033949

RESUMO

The small size of spores and the relatively low abundance of germination proteins, cause difficulties in their microscopic analyses using epifluorescence microscopy. Super-resolution three-dimensional Structured Illumination Microscopy (3D-SIM) is a promising tool to overcome this hurdle and reveal the molecular details of the process of germination of Bacillus subtilis (B. subtilis) spores. Here, we describe the use of a modified SIMcheck (ImageJ)-assistant 3D imaging process and fluorescent reporter proteins for SIM microscopy of B. subtilis spores' germinosomes, cluster(s) of germination proteins. We also present a (standard)3D-SIM imaging procedure for FM4-64 staining of B. subtilis spore membranes. By using these procedures, we obtained unsurpassed resolution for germinosome localization and show that >80% of B. subtilis KGB80 dormant spores obtained after sporulation on defined minimal MOPS medium have one or two GerD-GFP and GerKB-mCherry foci. Bright foci were also observed in FM4-64 stained spores' 3D-SIM images suggesting that inner membrane lipid domains of different fluidity likely exist. Further studies that use double labeling procedures with membrane dyes and germinosome reporter proteins to assess co-localization and thus get an optimal overview of the organization of Bacillus germination proteins in the inner spore membrane are possible.


Assuntos
Bacillus subtilis/fisiologia , Membrana Celular/metabolismo , Esporos Bacterianos/fisiologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Fluorescência , Imageamento Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...