Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 10: 1257690, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116169

RESUMO

The present research is innovative as we followed a user-centered approach to implement and train two working memory architectures on an industrial RB-KAIROS + robot: GRU, a state-of-the-art architecture, and WorkMATe, a biologically-inspired alternative. Although user-centered approaches are essential to create a comfortable and safe HRI, they are still rare in industrial settings. Closing this research gap, we conducted two online user studies with large heterogeneous samples. The major aim of these studies was to evaluate the RB-KAIROS + robot's appearance, movements, and perceived memory functions before (User Study 1) and after the implementation and training of robot working memory (User Study 2). In User Study 1, we furthermore explored participants' ideas about robot memory and what aspects of the robot's movements participants found positive and what aspects they would change. The effects of participants' demographic background and attitudes were controlled for. In User Study 1, participants' overall evaluations of the robot were moderate. Participant age and negative attitudes toward robots led to more negative robot evaluations. According to exploratory analyses, these effects were driven by perceived low experience with robots. Participants expressed clear ideas of robot memory and precise suggestions for a safe, efficient, and comfortable robot navigation which are valuable for further research and development. In User Study 2, the implementation of WorkMATe and GRU led to more positive evaluations of perceived robot memory, but not of robot appearance and movements. Participants' robot evaluations were driven by their positive views of robots. Our results demonstrate that considering potential users' views can greatly contribute to an efficient and positively perceived robot navigation, while users' experience with robots is crucial for a positive HRI.

2.
Front Robot AI ; 6: 64, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33501079

RESUMO

Deception is a complex social skill present in human interactions. Many social professions such as teachers, therapists and law enforcement officers leverage on deception detection techniques to support their work activities. Robots with the ability to autonomously detect deception could provide an important aid to human-human and human-robot interactions. The objective of this work is to demonstrate the possibility to develop a lie detection system that could be implemented on robots. To this goal, we focus on human and human robot interaction to understand if there is a difference in the behavior of the participants when lying to a robot or to a human. Participants were shown short movies of robberies and then interrogated by a human and by a humanoid robot "detectives." According to the instructions, subjects provided veridical responses to half of the question and false replies to the other half. Behavioral variables such as eye movements, time to respond and eloquence were measured during the task, while personality traits were assessed before experiment initiation. Participant's behavior showed strong similarities during the interaction with the human and the humanoid. Moreover, the behavioral features were used to train and test a lie detection algorithm. The results show that the selected behavioral variables are valid markers of deception both in human-human and in human-robot interactions and could be exploited to effectively enable robots to detect lies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...