Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 372(1728)2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28717017

RESUMO

Diatoms are responsible for up to 40% of the carbon fixation in our oceans. The fixed carbon is moved through carbon metabolism towards the synthesis of organic molecules that are consumed through interlocking foodwebs, and this process is strongly impacted by the abiotic environment. However, it has become evident that diatoms can be used as 'platform' organisms for the production of high valuable bio-products such as lipids, pigments and carbohydrates where stress conditions can be used to direct carbon metabolism towards the commercial production of these compounds. In the first section of this review, some aspects of carbon metabolism in diatoms and how it is impacted by environmental factors are briefly described. The second section is focused on the biosynthesis of lipids and in particular omega-3 long-chain polyunsaturated fatty acids and how low temperature stress impacts on the production of these compounds. In a third section, we review the recent advances in bioengineering for lipid production. Finally, we discuss new perspectives for designing strains for the sustainable production of high-value lipids.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.


Assuntos
Carbono/metabolismo , Temperatura Baixa , Diatomáceas/metabolismo , Lipídeos/biossíntese , Bioengenharia , Metabolismo dos Lipídeos , Estresse Fisiológico
2.
PLoS One ; 12(2): e0171872, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28231253

RESUMO

Phytoplankton, with an estimated 30 000 to 1 000 000 species clustered in 12 phyla, presents a high taxonomic and ecophysiological diversity, reflected by the complex distribution of pigments among the different algal classes. High performance liquid chromatography is the gold standard method for qualitative and quantitative analysis of phytoplankton pigments in seawater and culture samples, but only a few pigments can be used as robust chemotaxonomic markers. A major challenge is thus to identify new ones, characteristic of a strain, species, class or taxon that cannot be currently identified on the basis of its pigment signature. Using an optimized extraction process coupled to a HPLC de-replication strategy, we examined the pigment composition of 37 microalgae strains, representative of the broad taxonomic diversity of marine and freshwater species (excluding cyanobacteria). For each species, the major pigments already described were unambiguously identified. We also observed the presence of several minor unidentified pigments in each chromatogram. The global analysis of pigment compositions revealed a total of 124 pigments, including 98 pigments or derivatives unidentified using the standards. Absorption spectra indicated that 35 corresponded to chlorophyll/porphyrin derivatives, 57 to carotenoids and six to derivatives having both spectral signatures. Sixty-one of these unidentified or new carotenoids and porphyrin derivatives were characteristic of particular strains or species, indicating their possible use as highly specific chemotaxonomic markers capable of identifying one strain out of the 37 selected. We developed a graphical analysis using Gephi software to give a clear representation of pigment communities among the various phytoplankton strains, and to reveal strain-characteristic and shared pigments. This made it possible to reconstruct the taxonomic evolution of microalgae classes, on the basis of the conservation, loss, and/or appearance of pigments.


Assuntos
Carotenoides/análise , Microalgas/química , Pigmentos Biológicos/análise , Porfirinas/análise , Carotenoides/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Água Doce/análise , Microalgas/classificação , Pigmentos Biológicos/isolamento & purificação , Porfirinas/isolamento & purificação , Água do Mar/análise , Xantinas/análise , Xantinas/isolamento & purificação
3.
Curr Pharm Biotechnol ; 13(15): 2733-50, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23072388

RESUMO

Through the photosynthetic activity, microalgae process more than 25% of annual inorganic carbon dissolved in oceans into carbohydrates that ultimately, serve to feed the other levels of the trophic networks. Besides, microalgae synthesize bioactive molecules such as pigments and lipids that exhibit health properties. In addition, abiotic stresses, such as high irradiance, nutrient starvation, UV irradiation, trigger metabolic reorientations ending with the production of other bioactive compounds such as ω-3 fatty acids or carotenoids. Traditionally, these compounds are acquired through the dietary alimentation. The increasing, and often unsatisfied, demand for compounds from natural sources, combined with the decrease of the halieutic resources, forces the search for alternative resources for these bioactive components. Microalgae possess this strong potential. For instance, the diatom Odontella aurita is already commercialized as dietary complement and compete with fish oil for human nutrition. In this contribution, the microalga world is briefly presented. Then, the different types of biologically active molecules identified in microalgae are presented together with their potential use. Due to space limitation, only the biological activities of lipids and pigments are described in details. The contribution ends with a description of the possibilities to play with the environmental constrains to increase the productivity of biologically active molecules by microalgae and by a description of the progresses made in the field of alga culturing.


Assuntos
Microalgas/metabolismo , Animais , Produtos Biológicos/metabolismo , Diatomáceas/metabolismo , Humanos , Lipídeos/biossíntese , Pigmentos Biológicos/biossíntese
4.
Bioresour Technol ; 124: 311-20, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22989659

RESUMO

Over the last decade, the use of microalgae for biofuel production and carbon dioxide sequestration has become a challenge worldwide. Processing costs are still too high for these methods to be profitable though, leading to a need to find high value by-products to optimise the added value of this biomass. For high-throughput screening of such metabolites, it is essential to reach the inner content of the cell. This paper presents research and development of a technique enabling a high extraction yield of any metabolite, taking into account the difficulty of extracting bound and or inaccessible molecules with a wide variety of polarities. To this end, several disruption techniques were tested at laboratory scale on two biological models: Porphyridium purpureum and Phaeodactylum tricornutum. A mixer mill gave the best results, offering access to a broad diversity of metabolites from microalgae for high-throughput screening.


Assuntos
Microalgas/metabolismo , Biocombustíveis , Dióxido de Carbono/isolamento & purificação
5.
Mar Drugs ; 9(5): 819-831, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21673891

RESUMO

Dunaliella tertiolecta (DT) was chemically investigated to isolate molecules inhibiting cancer cell proliferation and inducing apoptosis in vitro. The potency to inhibit cell growth was used for the bio-guided fractionation and isolation of active compounds using chromatographic techniques. The DT dichloromethane extract exhibited a strong anti-proliferative activity on MCF-7 and LNCaP cells, and was further fractionated and sub-fractionated by RP-HPLC. High resolution mass spectrometry and spectrophotometric analysis unequivocally identified violaxanthin as the most antiproliferative molecule present in DT DCM extract. Violaxanthin purified from DT induced MCF-7 dose-dependent growth inhibition in continuous and discontinuous treatments, at concentrations as low as 0.1 µg·mL⁻¹ (0.17 µM). Phosphatidylserine exposure, typical of early apoptosis, was observed after 48 h treatment at 8 µg·mL⁻¹ (13.3 µM) but no DNA fragmentation, characteristic of late apoptosis steps, could be detected even after 72 h treatment at 40 µg·mL⁻¹ (66.7 µM). Taken together, our results demonstrate the strong antiproliferative activity of violaxanthin on one human mammary cancer cell line, and suggest that studying the pharmacology of violaxanthin and pharmacomodulated derivatives on cancer cells may allow potent antiproliferative drugs to be obtained.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Microalgas/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Fragmentação do DNA/efeitos dos fármacos , Humanos , Xantofilas/isolamento & purificação , Xantofilas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...