Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 147: 106136, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37774439

RESUMO

New bone repair materials are needed for treatment of trauma- and disease-related skeletal defects as they still represent a major challenge in clinical practice. Additionally, new strategies are required to combat orthopedic device-related infections (ODRI), given the rising incidence of total joint replacement and fracture fixation surgeries in increasingly elderly populations. Recently, the convergence of additive manufacturing (AM) and bone tissue engineering (BTE) has facilitated the development of bone healthcare to achieve personalized three-dimensional (3D) scaffolds. This study focused on the development of a 3D printable bone repair material, based on the biopolymers poly(lactic acid) (PLA) and chitosan. Two different types of PLA and chitosan differing in their molecular weight (MW) were explored. The novel feature of this research was the successful 3D printing using biocomposite filaments composed of PLA and 10 wt% chitosan, with clear chitosan entrapment within the PLA matrix confirmed by Scanning Electron Microscopy (SEM) images. Tensile testing of injection molded samples indicated an increase in stiffness, compared to pure PLA scaffolds, suggesting potential for improved load-bearing characteristics in bone scaffolds. However, the potential benefit of chitosan on the biocomposite stiffness could not be reproduced in compression testing of 3D printed cylinders. The antibacterial assays confirmed antibacterial activity of chitosan when dissolved in acetic acid. The study also verified the biodegradability of the scaffolds, with a process producing an acidic environment that could potentially be neutralized by chitosan. In conclusion, the study indicated the feasibility of the proposed PLA/chitosan biocomposite for 3D printing, demonstrating adequate mechanical strength, antibacterial properties and biodegradability, which could serve as a new material for bone repair.

2.
Bioengineering (Basel) ; 10(6)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37370613

RESUMO

Breast cancer is the most common cancer among women, and even though treatments are available, efficiency varies with the patients. In vitro 2D models are commonly used to develop new treatments. However, 2D models overestimate drug efficiency, which increases the failure rate in later phase III clinical trials. New model systems that allow extensive and efficient drug screening are thus required. Three-dimensional printed hydrogels containing active components for cancer cell growth are interesting candidates for the preparation of next generation cancer cell models. Macromolecules, obtained from marine- and land-based resources, can form biopolymers (polysaccharides such as alginate, chitosan, hyaluronic acid, and cellulose) and bioactive components (structural proteins such as collagen, gelatin, and silk fibroin) in hydrogels with adequate physical properties in terms of porosity, rheology, and mechanical strength. Hence, in this study attention is given to biofabrication methods and to the modification with biological macromolecules to become bioactive and, thus, optimize 3D printed structures that better mimic the cancer cell microenvironment. Ink formulations combining polysaccharides for tuning the mechanical properties and bioactive polymers for controlling cell adhesion is key to optimizing the growth of the cancer cells.

3.
Carbohydr Polym ; 314: 120923, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173022

RESUMO

To commercialize a biomedical product as a medical device, reproducibility of production and time-stability are important parameters. Studies of reproducibility are lacking in the literature. Additionally, chemical pre-treatments of wood fibres to produce highly fibrillated cellulose nanofibrils (CNF) seem to be demanding in terms of production efficiency, being a bottleneck for industrial upscaling. In this study, we evaluated the effect of pH on the dewatering time and washing steps of 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO)-mediated oxidized wood fibres when applying 3.8 mmol NaClO/g cellulose. The results indicate that the method does not affect the carboxylation of the nanocelluloses, and levels of approximately 1390 µmol/g were obtained with good reproducibility. The washing time of a Low-pH sample was reduced to 1/5 of the time required for washing a Control sample. Additionally, the stability of the CNF samples was assessed over 10 months and changes were quantified, the most pronounced were the increase of potential residual fibre aggregates, reduction of viscosity and increase of carboxylic acid content. The cytotoxicity and skin irritation potential were not affected by the detected differences between the Control and Low-pH samples. Importantly, the antibacterial effect of the carboxylated CNFs against S. aureus and P. aeruginosa was confirmed.


Assuntos
Staphylococcus aureus , Cicatrização , Reprodutibilidade dos Testes , Hidrogéis/química , Celulose/farmacologia , Celulose/química , Pseudomonas aeruginosa
4.
Green Chem ; 24(9): 3794-3804, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35694220

RESUMO

Blueberry pruning waste (BPw), sourced as residues from agroforestry operations in Chile, was used to produce added-value products, including platform chemicals and materials. BPw fractionation was implemented using biobased solvents (γ-valerolactone, GVL) and pyrolysis (500 °C), yielding solid fractions that are rich in phenols and antioxidants. The liquid fraction was found to be enriched in sugars, acids, and amides. Alongside, filaments and 3D-printed meshes were produced via wet spinning and Direct-Ink-Writing (DIW), respectively. For the latter purpose, BPw was dissolved in an ionic liquid, 1-ethyl-3-methylimidazolium acetate ([emim][OAc]), and regenerated into lignocellulose filaments with highly aligned nanofibrils (wide-angle X-ray scattering) that simultaneously showed extensibility (wet strain as high as 39%). BPw-derived lignocellulose filaments showed a tenacity (up to 2.3 cN dtex-1) that is comparable to that of rayon fibers and showed low light reflectance (R ES factor <3%). Meanwhile, DIW of the respective gels led to meshes with up to 60% wet stretchability. The LCF and meshes were demonstrated to have reliable performance in marine environments. As a demonstration, we show the prospects of replacing plastic cords and other materials used to restore coral reefs on the coast of Mexico.

5.
ACS Appl Mater Interfaces ; 14(26): 30236-30245, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35727693

RESUMO

Natural biopolymers have become key players in the preparation of biodegradable food packaging. However, biopolymers are typically highly hydrophilic, which imposes limitations in terms of barrier properties that are associated with water interactions. Here, we enhance the barrier properties of biobased packaging using multilayer designs, in which each layer displays a complementary barrier function. Oxygen, water vapor, and UV barriers were achieved using a stepwise assembly of cellulose nanofibers, biobased wax, and lignin particles supported by chitin nanofibers. We first engineered several designs containing CNFs and carnauba wax. Among them, we obtained low water vapor permeabilities in an assembly containing three layers, i.e., CNF/wax/CNF, in which wax was present as a continuous layer. We then incorporated a layer of lignin nanoparticles nucleated on chitin nanofibrils (LPChNF) to introduce a complete barrier against UV light, while maintaining film translucency. Our multilayer design which comprised CNF/wax/LPChNF enabled high oxygen (OTR of 3 ± 1 cm3/m2·day) and water vapor (WVTR of 6 ± 1 g/m2·day) barriers at 50% relative humidity. It was also effective against oil penetration. Oxygen permeability was controlled by the presence of tight networks of cellulose and chitin nanofibers, while water vapor diffusion through the assembly was regulated by the continuous wax layer. Lastly, we showcased our fully renewable packaging material for preservation of the texture of a commercial cracker (dry food). Our material showed functionality similar to that of the original packaging, which was composed of synthetic polymers.


Assuntos
Embalagem de Alimentos , Nanofibras , Biopolímeros , Celulose , Quitina , Lignina , Oxigênio , Vapor
6.
Biomacromolecules ; 22(2): 880-889, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33377786

RESUMO

Cellulose (CNF) and chitin (ChNF) nanofibers are known to form materials that are both tough and strong. In this study, we hypothesize that the inertness of networks produced from CNF and ChNF makes them ideal templates for heterogeneous reactions and in situ formation of nanoarchitectures. We expand nanoparticle templating on polysaccharide colloids by introducing a new and facile process that leads to the growth of organic nanoparticles on CNF and ChNF in aqueous media. The process, based on solvent shifting supported on solid interfaces, is demonstrated by direct observation of lignin nanoparticles that are further used for their photocatalytic activity. Importantly, the dynamics of nanoparticle nucleation and growth is correlated with the surface chemistry of the templating nanopolysaccharides. Electrostatic repulsion between the deprotonated lignin molecules and the slightly negative CNF support led to limited adsorption and was effective in producing free (nonbound) lignin nanoparticles (28 ± 7 nm) via precipitation. In contrast, the stronger interfacial interactions between the positively charged ChNF and lignin molecules facilitated instantaneous and extensive lignin adsorption, followed by nucleation and growth into relatively larger nanoparticles (46 ± 17 nm). The latter were homogeneously distributed and strongly coupled to the ChNF support. Overall, we introduce lignin nanoparticle nucleation and growth on renewable nanopolysaccharides, offering an effective route toward in situ synthesis of highly functional fibrils and related cohesive films that offer a great potential in packaging and other applications.


Assuntos
Nanofibras , Nanopartículas , Celulose , Quitina , Lignina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...