Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Eur J Clin Invest ; : e14259, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845111

RESUMO

BACKGROUND: The commonest echocardiographic measurement, left ventricular ejection fraction, can not necessarily predict mortality of recipients following heart transplantation potentially due to afterload dependency. Afterload-independent left ventricular stroke work index (LVSWI) is alternatively recommended by the current guideline; however, pulmonary artery catheters are rarely inserted in organ donors in most jurisdictions. We propose a novel non-invasive echocardiographic parameter, Pressure-Strain Product (PSP), as a potential surrogate of catheter-based LVSWI. This study aimed to investigate if PSP could correlate with catheter-based LVSWI in an ovine model of brain stem death (BSD) donors. The association between PSP and myocardial mitochondrial function in the post-transplant hearts was also evaluated. METHODS: Thirty-one female sheep (weight 47 ± 5 kg) were divided into two groups; BSD (n = 15), and sham neurologic injury (n = 16). Echocardiographic parameters including global circumferential strain (GCS) and global radial strain (GRS) and pulmonary artery catheter-based LVSWI were simultaneously measured at 8-timepoints during 24-h observation. PSP was calculated as a product of GCS or GRS, and mean arterial pressure for PSPcirc or PSPrad, respectively. Myocardial mitochondrial function was evaluated following 6-h observation after heart transplantation. RESULTS: In BSD donor hearts, PSPcirc (n = 96, rho = .547, p < .001) showed the best correlation with LVSWI among other echocardiographic parameters. PSPcirc returned AUC of .825 to distinguish higher values of cardiomyocyte mitochondrial function (cut-off point; mean value of complex 1,2 O2 Flux) in post-transplant hearts, which was greater than other echocardiographic parameters. CONCLUSIONS: PSPcirc could be used as a surrogate of catheter-based LVSWI reflecting mitochondrial function.

2.
ASAIO J ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38833540

RESUMO

Impaired primary hemostasis and dysregulated angiogenesis, known as a two-hit hypothesis, are associated with gastrointestinal (GI) bleeding in patients with continuous-flow left ventricular assist devices (CF-LVADs). Exercise is known to influence hemostasis and angiogenesis in healthy individuals; however, little is known about the effect in patients with CF-LVADs. The objective of this prospective observational study was to determine whether acute exercise modulates two-hit hypothesis mediators associated with GI bleeding in patients with a CF-LVAD. Twenty-two patients with CF-LVADs performed acute exercise either on a cycle ergometer for approximately 10 minutes or on a treadmill for 30 minutes. Blood samples were taken pre- and post-exercise to analyze hemostatic and angiogenic biomarkers. Acute exercise resulted in an increased platelet count (p < 0.00001) and platelet function (induced by adenosine diphosphate, p = 0.0087; TRAP-6, p = 0.0005; ristocetin, p = 0.0009). Additionally, high-molecular-weight vWF multimers (p < 0.00001), vWF collagen-binding activity (p = 0.0012), factor VIII (p = 0.034), angiopoietin-1 (p = 0.0026), and vascular endothelial growth factor (p = 0.0041) all increased after acute exercise. This pilot work demonstrates that acute exercise modulated two-hit hypothesis mediators associated with GI bleeding in patients with CF-LVADs.

3.
Eur J Clin Invest ; : e14263, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849326

RESUMO

BACKGROUND: Left ventricular stroke work index (LVSWI) and cardiac power index (CPI) account for the haemodynamic load of the left ventricle and are promising prognostic values in cardiogenic shock. However, accurately and non-invasively measuring these parameters during veno-arterial extracorporeal membrane oxygenation (V-A ECMO) is challenging and potentially biased by the extracorporeal circulation. This study aimed to investigate, in an ovine model of cardiogenic shock, whether Pressure-Strain Product (PSP), a novel speckle-tracking echocardiography parameter, (1) can correlate with pressure-volume catheter-based LVSWI and CPI, and (2) can be load-independent during the flow modification of V-A ECMO. METHODS: Nine Dorset-cross ewes (51 ± 4 kg) were included. After cardiogenic shock was induced, full support V-A ECMO (X L/min based on 60 mL/kg/min) commenced. At seven time points during 24-h observation, echocardiographic parameters as well as pressure-volume catheter-based LVSWI and CPI were simultaneously measured with X and following X-1 L/min of ECMO flow. PSP was calculated by multiplying global circumferential strain or global radial strain, and mean arterial pressure, for PSPcirc or PSPrad, respectively. RESULTS: PSPcirc showed a stronger correlation with LVSWI (correlation coefficient, CC = .360, p < .001) and CPI (CC = .283, p < .001) than other echocardiographic parameters. The predictability of PSPcirc for pressure-volume catheter-based LVSWI (AUC .82) and CPI (AUC .80) was also higher than other echocardiographic parameters. No statistically significant differences were identified between the two ECMO flow variations in PSPcirc (p = .558). CONCLUSIONS: A novel echocardiographic parameter, PSP, may non-invasively predict pressure-volume catheter-based LVSWI and CPI in a load-independent manner in a cardiogenic shock supported by V-A ECMO.

5.
J Heart Lung Transplant ; 42(8): 1015-1029, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031869

RESUMO

BACKGROUND: The global shortage of donor hearts available for transplantation is a major problem for the treatment of end-stage heart failure. The ischemic time for donor hearts using traditional preservation by standard static cold storage (SCS) is limited to approximately 4 hours, beyond which the risk for primary graft dysfunction (PGD) significantly increases. Hypothermic machine perfusion (HMP) of donor hearts has been proposed to safely extend ischemic time without increasing the risk of PGD. METHODS: Using our sheep model of 24 hours brain death (BD) followed by orthotopic heart transplantation (HTx), we examined post-transplant outcomes in recipients following donor heart preservation by HMP for 8 hours, compared to donor heart preservation for 2 hours by either SCS or HMP. RESULTS: Following HTx, all HMP recipients (both 2 hours and 8 hours groups) survived to the end of the study (6 hours after transplantation and successful weaning from cardiopulmonary bypass), required less vasoactive support for hemodynamic stability, and exhibited superior metabolic, fluid status and inflammatory profiles compared to SCS recipients. Contractile function and cardiac damage (troponin I release and histological assessment) was comparable between groups. CONCLUSIONS: Overall, compared to current clinical SCS, recipient outcomes following transplantation are not adversely impacted by extending HMP to 8 hours. These results have important implications for clinical transplantation where longer ischemic times may be required (e.g., complex surgical cases, transport across long distances). Additionally, HMP may allow safe preservation of "marginal" donor hearts that are more susceptible to myocardial injury and facilitate increased utilization of these hearts for transplantation.


Assuntos
Transplante de Coração , Animais , Ovinos , Humanos , Preservação de Órgãos/métodos , Doadores de Tecidos , Perfusão/métodos , Coração
6.
Sci Rep ; 13(1): 4002, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899029

RESUMO

Differential hypoxaemia (DH) is common in patients supported by femoral veno-arterial extracorporeal membrane oxygenation (V-A ECMO) and can cause cerebral hypoxaemia. To date, no models have studied the direct impact of flow on cerebral damage. We investigated the impact of V-A ECMO flow on brain injury in an ovine model of DH. After inducing severe cardiorespiratory failure and providing ECMO support, we randomised six sheep into two groups: low flow (LF) in which ECMO was set at 2.5 L min-1 ensuring that the brain was entirely perfused by the native heart and lungs, and high flow (HF) in which ECMO was set at 4.5 L min-1 ensuring that the brain was at least partially perfused by ECMO. We used invasive (oxygenation tension-PbTO2, and cerebral microdialysis) and non-invasive (near infrared spectroscopy-NIRS) neuromonitoring, and euthanised animals after five hours for histological analysis. Cerebral oxygenation was significantly improved in the HF group as shown by higher PbTO2 levels (+ 215% vs - 58%, p = 0.043) and NIRS (67 ± 5% vs 49 ± 4%, p = 0.003). The HF group showed significantly less severe brain injury than the LF group in terms of neuronal shrinkage, congestion and perivascular oedema (p < 0.0001). Cerebral microdialysis values in the LF group all reached the pathological thresholds, even though no statistical difference was found between the two groups. Differential hypoxaemia can lead to cerebral damage after only a few hours and mandates a thorough neuromonitoring of patients. An increase in ECMO flow was an effective strategy to reduce such damages.


Assuntos
Lesões Encefálicas , Oxigenação por Membrana Extracorpórea , Animais , Lesões Encefálicas/complicações , Oxigenação por Membrana Extracorpórea/efeitos adversos , Hipóxia/complicações , Modelos Teóricos , Ovinos , Choque Cardiogênico/etiologia
7.
J Vasc Access ; : 11297298221127760, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36281219

RESUMO

BACKGROUND: Peripheral intravenous catheters (PIVCs) are the most commonly used invasive medical device, yet despite best efforts by end-users, PIVCs experience unacceptably high early failure rates. We aimed to design a new PIVC that reduces the early failure rate of in-dwelling PIVCs and we conducted preliminary tests to assess its efficacy and safety in a porcine model of intravenous access. METHODS: We used computer-aided design and simulation to create a PIVC with a ramped tip geometry, which directs the infused fluid away from the vein wall; we called the design the FloRamp™. We created FloRamp prototypes (test device) and tested them against a market-leading device (BD Insyte™; control device) in a highly-controlled setting with five insertion sites per device in four pigs. We measured resistance to infusion and visual infusion phlebitis (VIP) every 6 h and terminated the experiment at 48 h. Veins were harvested for histology and seven pathological markers were assessed. RESULTS: Computer simulations showed that the optimum FloRamp tip reduced maximum endothelial shear stress by 60%, from 12.7 Pa to 5.1 Pa, compared to a typical PIVC tip and improved the infusion dynamics of saline in the blood stream. In the animal study, we found that 2/5 of the control devices were occluded after 24 h, whereas all test devices remained patent and functional. The FloRamp created less resistance to infusion (0.73 ± 0.81 vs 0.47 ± 0.50, p = 0.06) and lower VIP scores (0.60 ± 0.93 vs 0.31 ± 0.70, p = 0.09) than the control device, although neither findings were significantly different. Histopathology revealed that 5/7 of the assessed markers were lower in veins with the FloRamp. CONCLUSIONS: Herein we report preliminary assessment of a novel PIVC design, which could be advantageous in clinical settings through decreased device occlusion and reduced early failure rates.

8.
Metabolites ; 12(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35888779

RESUMO

Despite decades of comprehensive research, Acute Respiratory Distress Syndrome (ARDS) remains a disease with high mortality and morbidity worldwide. The discovery of inflammatory subphenotypes in human ARDS provides a new approach to study the disease. In two different ovine ARDS lung injury models, one induced by additional endotoxin infusion (phenotype 2), mimicking some key features as described in the human hyperinflammatory group, we aim to describe protein expression among the two different ovine models. Nine animals on mechanical ventilation were included in this study and were randomized into (a) phenotype 1, n = 5 (Ph1) and (b) phenotype 2, n = 4 (Ph2). Plasma was collected at baseline, 2, 6, 12, and 24 h. After protein extraction, data-independent SWATH-MS was applied to inspect protein abundance at baseline, 2, 6, 12, and 24 h. Cluster analysis revealed protein patterns emerging over the study observation time, more pronounced by the factor of time than different injury models of ARDS. A protein signature consisting of 33 proteins differentiated among Ph1/2 with high diagnostic accuracy. Applying network analysis, proteins involved in the inflammatory and defense response, complement and coagulation cascade, oxygen binding, and regulation of lipid metabolism were activated over time. Five proteins, namely LUM, CA2, KNG1, AGT, and IGJ, were more expressed in Ph2.

9.
Front Med (Lausanne) ; 9: 961336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865167

RESUMO

Background: The discovery of biological subphenotypes in acute respiratory distress syndrome (ARDS) might offer a new approach to ARDS in general and possibly targeted treatment, but little is known about the underlying biology yet. To validate our recently described ovine ARDS phenotypes model, we compared a subset of messenger ribonucleic acid (mRNA) markers in leukocytes as reported before to display differential expression between human ARDS subphenotypes to the expression in lung tissue in our ovine ARDS phenotypes model (phenotype 1 (Ph1): hypoinflammatory; phenotype 2 (Ph2): hyperinflammatory). Methods: We studied 23 anesthetized sheep on mechanical ventilation with observation times between 6 and 24 h. They were randomly allocated to the two phenotypes (n = 14 to Ph1 and n = 9 to Ph2). At study end, lung tissue was harvested and preserved in RNAlater. After tissue homogenization in TRIzol, total RNA was extracted and custom capture and reporter probes designed by NanoString Technologies were used to measure the expression of 14 genes of interest and the 6 housekeeping genes on a nCounter SPRINT profiler. Results: Among the 14 mRNA markers, in all animals over all time points, 13 markers showed the same trend in ovine Ph2/Ph1 as previously reported in the MARS cohort: matrix metalloproteinase 8, olfactomedin 4, resistin, G protein-coupled receptor 84, lipocalin 2, ankyrin repeat domain 22, CD177 molecule, and transcobalamin 1 expression was higher in Ph2 and membrane metalloendopeptidase, adhesion G protein-coupled receptor E3, transforming growth factor beta induced, histidine ammonia-lyase, and sulfatase 2 expression was higher in Ph1. These expression patterns could be found when different sources of mRNA - such as blood leukocytes and lung tissue - were compared. Conclusion: In human and ovine ARDS subgroups, similar activated pathways might be involved (e.g., oxidative phosphorylation, NF-κB pathway) that result in specific phenotypes.

10.
Intensive Care Med Exp ; 9(1): 60, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34950993

RESUMO

BACKGROUND: Heart transplantation (HTx) from brainstem dead (BSD) donors is the gold-standard therapy for severe/end-stage cardiac disease, but is limited by a global donor heart shortage. Consequently, innovative solutions to increase donor heart availability and utilisation are rapidly expanding. Clinically relevant preclinical models are essential for evaluating interventions for human translation, yet few exist that accurately mimic all key HTx components, incorporating injuries beginning in the donor, through to the recipient. To enable future assessment of novel perfusion technologies in our research program, we thus aimed to develop a clinically relevant sheep model of HTx following 24 h of donor BSD. METHODS: BSD donors (vs. sham neurological injury, 4/group) were hemodynamically supported and monitored for 24 h, followed by heart preservation with cold static storage. Bicaval orthotopic HTx was performed in matched recipients, who were weaned from cardiopulmonary bypass (CPB), and monitored for 6 h. Donor and recipient blood were assayed for inflammatory and cardiac injury markers, and cardiac function was assessed using echocardiography. Repeated measurements between the two different groups during the study observation period were assessed by mixed ANOVA for repeated measures. RESULTS: Brainstem death caused an immediate catecholaminergic hemodynamic response (mean arterial pressure, p = 0.09), systemic inflammation (IL-6 - p = 0.025, IL-8 - p = 0.002) and cardiac injury (cardiac troponin I, p = 0.048), requiring vasopressor support (vasopressor dependency index, VDI, p = 0.023), with normalisation of biomarkers and physiology over 24 h. All hearts were weaned from CPB and monitored for 6 h post-HTx, except one (sham) recipient that died 2 h post-HTx. Hemodynamic (VDI - p = 0.592, heart rate - p = 0.747) and metabolic (blood lactate, p = 0.546) parameters post-HTx were comparable between groups, despite the observed physiological perturbations that occurred during donor BSD. All p values denote interaction among groups and time in the ANOVA for repeated measures. CONCLUSIONS: We have successfully developed an ovine HTx model following 24 h of donor BSD. After 6 h of critical care management post-HTx, there were no differences between groups, despite evident hemodynamic perturbations, systemic inflammation, and cardiac injury observed during donor BSD. This preclinical model provides a platform for critical assessment of injury development pre- and post-HTx, and novel therapeutic evaluation.

11.
Physiol Rep ; 9(19): e15048, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34617676

RESUMO

The acute respiratory distress syndrome (ARDS) describes a heterogenous population of patients with acute severe respiratory failure. However, contemporary advances have begun to identify distinct sub-phenotypes that exist within its broader envelope. These sub-phenotypes have varied outcomes and respond differently to several previously studied interventions. A more precise understanding of their pathobiology and an ability to prospectively identify them, may allow for the development of precision therapies in ARDS. Historically, animal models have played a key role in translational research, although few studies have so far assessed either the ability of animal models to replicate these sub-phenotypes or investigated the presence of sub-phenotypes within animal models. Here, in three ovine models of ARDS, using combinations of oleic acid and intravenous, or intratracheal lipopolysaccharide, we investigated the presence of sub-phenotypes which qualitatively resemble those found in clinical cohorts. Principal Component Analysis and partitional clustering identified two clusters, differentiated by markers of shock, inflammation, and lung injury. This study provides a first exploration of ARDS phenotypes in preclinical models and suggests a methodology for investigating this phenomenon in future studies.


Assuntos
Fenótipo , Síndrome do Desconforto Respiratório/fisiopatologia , Animais , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Lipopolissacarídeos , Ácido Oleico , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/induzido quimicamente , Ovinos
12.
Front Med (Lausanne) ; 8: 723217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490308

RESUMO

The Acute Respiratory Distress Syndrome (ARDS) has caused innumerable deaths worldwide since its initial description over five decades ago. Population-based estimates of ARDS vary from 1 to 86 cases per 100,000, with the highest rates reported in Australia and the United States. This syndrome is characterised by a breakdown of the pulmonary alveolo-epithelial barrier with subsequent severe hypoxaemia and disturbances in pulmonary mechanics. The underlying pathophysiology of this syndrome is a severe inflammatory reaction and associated local and systemic coagulation dysfunction that leads to pulmonary and systemic damage, ultimately causing death in up to 40% of patients. Since inflammation and coagulation are inextricably linked throughout evolution, it is biological folly to assess the two systems in isolation when investigating the underlying molecular mechanisms of coagulation dysfunction in ARDS. Although the body possesses potent endogenous systems to regulate coagulation, these become dysregulated and no longer optimally functional during the acute phase of ARDS, further perpetuating coagulation, inflammation and cell damage. The inflammatory ARDS subphenotypes address inflammatory differences but neglect the equally important coagulation pathway. A holistic understanding of this syndrome and its subphenotypes will improve our understanding of underlying mechanisms that then drive translation into diagnostic testing, treatments, and improve patient outcomes.

13.
Pharmacol Res ; 169: 105631, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33905863

RESUMO

BACKGROUND: Heart failure is an inexorably progressive disease with a high mortality, for which heart transplantation (HTx) remains the gold standard treatment. Currently, donor hearts are primarily derived from patients following brain stem death (BSD). BSD causes activation of the sympathetic nervous system, increases endothelin levels, and triggers significant inflammation that together with potential myocardial injury associated with the transplant procedure, may affect contractility of the donor heart. We examined peri-transplant myocardial catecholamine sensitivity and cardiac contractility post-BSD and transplantation in a clinically relevant ovine model. METHODS: Donor sheep underwent BSD (BSD, n = 5) or sham (no BSD) procedures (SHAM, n = 4) and were monitored for 24h prior to heart procurement. Orthotopic HTx was performed on a separate group of donor animals following 24h of BSD (BSD-Tx, n = 6) or SHAM injury (SH-Tx, n = 5). The healthy recipient heart was used as a control (HC, n = 11). A cumulative concentration-effect curve to (-)-noradrenaline (NA) was established using left (LV) and right ventricular (RV) trabeculae to determine ß1-adrenoceptor mediated potency (-logEC50 [(-)-noradrenaline] M) and maximal contractility (Emax). RESULTS: Our data showed reduced basal and maximal (-)-noradrenaline induced contractility of the RV (but not LV) following BSD as well as HTx, regardless of whether the donor heart was exposed to BSD or SHAM. The potency of (-)-noradrenaline was lower in left and right ventricles for BSD-Tx and SH-Tx compared to HC. CONCLUSION: These studies show that the combination of BSD and transplantation are likely to impair contractility of the donor heart, particularly for the RV. For the donor heart, this contractile dysfunction appears to be independent of changes to ß1-adrenoceptor sensitivity. However, altered ß1-adrenoceptor signalling is likely to be involved in post-HTx contractile dysfunction.


Assuntos
Morte Encefálica/patologia , Tronco Encefálico/patologia , Transplante de Coração/efeitos adversos , Disfunção Ventricular Direita/etiologia , Animais , Modelos Animais de Doenças , Feminino , Contração Miocárdica , Ovinos , Disfunção Ventricular Direita/patologia
14.
J Immunol Methods ; 486: 112835, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32828792

RESUMO

There is growing evidence that inflammation underpins many common diseases. Inflammatory/immunomodulatory/immune mediators, such as cytokines, are key modulators of inflammation and mediate both immune cell recruitment and complex intracellular signalling pathways. Ovine models of disease are increasingly utilized in pre-clinical research, however existing methods for measuring cytokine levels are limited. We established and validated enzyme-linked immunosorbent assays (ELISAs) targeting interleukin (IL)-1ß, IL-6, IL-8 and IL-10 in sheep plasma. These ELISAs showed high sensitivity and specificity with intra- and inter-assay CV's below 10%, and recovery rates between 82 and 123%. Sensitivity for IL-1ß, IL-6, IL-8 and IL-10 were 117.6 pg/mL, 443.1 pg/mL, 30.9 pg/mL, and 64.3 pg/mL, respectively. ELISA test result reproducibility decreased significantly after 12 weeks of plasma storage at -80 °C. Therefore, for accurate cytokine measurements, plasma samples need to be tested within three months of sample collection to account for cytokine protein degradation. These ELISAs offer a reliable and convenient method to identify inflammatory cytokine changes in sheep, allowing key insights into the disease pathogenesis of these ruminants.


Assuntos
Ensaio de Imunoadsorção Enzimática , Mediadores da Inflamação/sangue , Interleucina-10/sangue , Interleucina-1beta/sangue , Interleucina-6/sangue , Interleucina-8/sangue , Animais , Coleta de Amostras Sanguíneas , Temperatura Baixa , Desnaturação Proteica , Estabilidade Proteica , Reprodutibilidade dos Testes , Carneiro Doméstico , Fatores de Tempo
15.
Artif Organs ; 44(12): 1276-1285, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32644199

RESUMO

Use of extracorporeal membrane oxygenation (ECMO) is expanding, however, it is still associated with significant morbidity and mortality. Activation of inflammatory and innate immune responses and hemostatic alterations contribute to complications. Hyperoxia may play a role in exacerbating these responses. Nine ex vivo ECMO circuits were tested using fresh healthy human whole blood, with two oxygen levels: 21% inspired fraction of oxygen (FiO2 ; mild hyperoxia; n = 5) and 100% FiO2 (severe hyperoxia; n = 4). Serial blood samples were taken for analysis of platelet aggregometry, leukocyte activation, inflammatory, and oxidative stress markers. ECMO resulted in reduced adenosine diphosphate- (P < .05) and thrombin receptor activating peptide-induced (P < .05) platelet aggregation, as well as increasing levels of the neutrophil activation marker, neutrophil elastase (P = .013). Additionally, levels of the inflammatory chemokine interleukin-8 were elevated (P < .05) and the activity of superoxide dismutase, a marker of oxidative stress, was increased (P = .002). Hyperoxia did not augment these responses, with no significant differences detected between mild and severe hyperoxia. Our ex vivo model of ECMO revealed that the circuit itself triggers a pro-inflammatory and oxidative stress response, however, exposure to supra-physiologic oxygen does not amplify that response. Extended-duration studies and inclusion of an endothelial component could be beneficial in characterizing longer term changes.


Assuntos
Oxigenação por Membrana Extracorpórea/efeitos adversos , Hiperóxia/imunologia , Agregação Plaquetária/imunologia , Plaquetas/imunologia , Humanos , Hiperóxia/sangue , Hiperóxia/diagnóstico , Inflamação/sangue , Inflamação/imunologia , Leucócitos/imunologia , Estresse Oxidativo/imunologia , Índice de Gravidade de Doença
16.
Am J Respir Crit Care Med ; 202(3): 383-392, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32293914

RESUMO

Rationale: Mesenchymal stromal cell (MSC) therapy is a promising intervention for acute respiratory distress syndrome (ARDS), although trials to date have not investigated its use alongside extracorporeal membrane oxygenation (ECMO). Recent preclinical studies have suggested that combining these interventions may attenuate the efficacy of ECMO.Objectives: To determine the safety and efficacy of MSC therapy in a model of ARDS and ECMO.Methods: ARDS was induced in 14 sheep, after which they were established on venovenous ECMO. Subsequently, they received either endobronchial induced pluripotent stem cell-derived human MSCs (hMSCs) (n = 7) or cell-free carrier vehicle (vehicle control; n = 7). During ECMO, a low Vt ventilation strategy was employed in addition to protocolized hemodynamic support. Animals were monitored and supported for 24 hours. Lung tissue, bronchoalveolar fluid, and plasma were analyzed, in addition to continuous respiratory and hemodynamic monitoring.Measurements and Main Results: The administration of hMSCs did not improve oxygenation (PaO2/FiO2 mean difference = -146 mm Hg; P = 0.076) or pulmonary function. However, histological evidence of lung injury (lung injury score mean difference = -0.07; P = 0.04) and BAL IL-8 were reduced. In addition, hMSC-treated animals had a significantly lower cumulative requirement for vasopressor. Despite endobronchial administration, animals treated with hMSCs had a significant elevation in transmembrane oxygenator pressure gradients. This was accompanied by more pulmonary artery thromboses and adherent hMSCs found on explanted oxygenator fibers.Conclusions: Endobronchial hMSC therapy in an ovine model of ARDS and ECMO can impair membrane oxygenator function and does not improve oxygenation. These data do not recommend the safe use of hMSCs during venovenous ECMO.


Assuntos
Lesão Pulmonar Aguda/patologia , Oxigenação por Membrana Extracorpórea , Pulmão/patologia , Transplante de Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório/terapia , Lesão Pulmonar Aguda/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Adesão Celular , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas , Interleucina-8/imunologia , Pulmão/imunologia , Oxigenadores de Membrana , Artéria Pulmonar , Distribuição Aleatória , Respiração Artificial , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia , Ovinos , Carneiro Doméstico , Trombose/patologia , Vasoconstritores/uso terapêutico
17.
Front Immunol ; 11: 600684, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488595

RESUMO

A plethora of leukocyte modulations have been reported in critically ill patients. Critical illnesses such as acute respiratory distress syndrome and cardiogenic shock, which potentially require extracorporeal membrane oxygenation (ECMO) support, are associated with changes in leukocyte numbers, phenotype, and functions. The changes observed in these illnesses could be compounded by exposure of blood to the non-endothelialized surfaces and non-physiological conditions of ECMO. This can result in further leukocyte activation, increased platelet-leukocyte interplay, pro-inflammatory and pro-coagulant state, alongside features of immunosuppression. However, the effects of ECMO on leukocytes, in particular their phenotypic and functional signatures, remain largely overlooked, including whether these changes have attributable mortality and morbidity. The aim of our narrative review is to highlight the importance of studying leukocyte signatures to better understand the development of complications associated with ECMO. Increased knowledge and appreciation of their probable role in ECMO-related adverse events may assist in guiding the design and establishment of targeted preventative actions.


Assuntos
Oxigenação por Membrana Extracorpórea , Leucócitos/imunologia , Síndrome do Desconforto Respiratório/imunologia , Choque Cardiogênico/imunologia , Humanos , Leucócitos/patologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/terapia , Choque Cardiogênico/patologia , Choque Cardiogênico/terapia
18.
Intensive Care Med Exp ; 7(1): 51, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31432279

RESUMO

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) is a life-saving modality used to manage cardiopulmonary failure refractory to conventional medical and surgical therapies. Despite advances in ECMO equipment, bleeding and thrombosis remain significant complications. While the flow rate for ECMO support is well recognized, less is known about the minimum-rate requirements and haemostasis. We investigated the relationship between different ECMO flow rates, and their effect on haemolysis and coagulation. METHODS: Ten ex-vivo ECMO circuits were tested using donated, < 24-h-old human whole blood, with two flow rates: high-flow at 4 L/min (normal adult cardiac output; n = 5) and low-flow at 1.5 L/min (weaning; n = 5). Serial blood samples were taken for analysis of haemolysis, von Willebrand factor (vWF) multimers by immunoblotting, rotational thromboelastometry, platelet aggregometry, flow cytometry and routine coagulation laboratory tests. RESULTS: Low-flow rates increased haemolysis after 2 h (p = 0.02), 4 h (p = 0.02) and 6 h (p = 0.02) and the loss of high-molecular-weight vWF multimers (p = 0.01), while reducing ristocetin-induced platelet aggregation (p = 0.0002). Additionally, clot formation times were prolonged (p = 0.006), with a corresponding decrease in maximum clot firmness (p = 0.006). CONCLUSIONS: In an ex-vivo model of ECMO, low-flow rate (1.5 L/min) altered haemostatic parameters compared to high-flow (4 L/min). Observed differences in haemolysis, ristocetin-induced platelet aggregation, high-molecular-weight vWF multimers and clot formation time suggest an increased risk of bleeding complications. Since patients are often on ECMO for protracted periods, extended-duration studies are required to characterise long-term ECMO-induced haemostatic changes.

19.
MethodsX ; 6: 1124-1132, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31193460

RESUMO

The Surviving Sepsis Campaign (SCC) and the American College of Critical Care Medicine (ACCM) guidelines recommend blood transfusion in sepsis when the haemoglobin concentration drops below 7.0 g/dL and 10.0 g/dL respectively, while the World Health Organisation (WHO) guideline recommends transfusion in septic shock 'if intravenous (IV) fluids do not maintain adequate circulation', as a supportive measure of last resort. Volume expansion using crystalloid and colloid fluid boluses for haemodynamic resuscitation in severe illness/sepsis, has been associated with adverse outcomes in recent literature. However, the volume expansion effect(s) following blood transfusion for haemodynamic circulatory support, in severe illness remain unclear with most previous studies having focused on evaluating effects of either different RBC storage durations (short versus long duration) or haemoglobin thresholds (low versus high threshold) pre-transfusion. •We describe the protocol for a pre-clinical randomised controlled trial designed to examine haemodynamic effect(s) of early volume expansion using packed RBCs (PRBCs) transfusion (before any crystalloids or colloids) in a validated ovine-model of hyperdynamic endotoxaemic shock.•Additional exploration of mechanisms underlying any physiological, haemodynamic, haematological, immunologic and tissue specific-effects of blood transfusion will be undertaken including comparison of effects of short (≤5 days) versus long (≥30 days) storage duration of PRBCs prior to transfusion.

20.
Perfusion ; 34(1_suppl): 5-14, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30966901

RESUMO

BACKGROUND: Extracorporeal membrane oxygenation is a life-saving support for heart and/or lung failure patients. Despite technological advancement, abnormal physiology persists and has been associated with subsequent adverse events. These include thrombosis, bleeding, systemic inflammatory response syndrome and infection. However, the underlying mechanisms are yet to be elucidated. We aimed to investigate whether the different flow dynamics of extracorporeal membrane oxygenation would alter immune responses, specifically the overall inflammatory response, leukocyte numbers and activation/adhesion surface antigen expression. METHODS: An ex vivo model was used with human whole blood circulating at 37°C for 6 hours at high (4 L/minute) or low (1.5 L/minute) flow dynamics, with serial blood samples taken for analysis. RESULTS: During high flow, production of interleukin-1ß (p < 0.0001), interleukin-6 (p = 0.0075), tumour necrosis factor-α (p = 0.0013), myeloperoxidase (p < 0.0001) and neutrophil elastase (p < 0.0001) were significantly elevated over time compared to low flow, in particular at 6 hours. While the remaining assessments exhibited minute changes between flow dynamics, a consistent trend of modulation in leukocyte subset numbers and phenotype was observed at 6 hours. CONCLUSION: We conclude that prolonged circulation at high flow triggers a prominent pro-inflammatory cytokine response and activates neutrophil granule release, but further research is needed to better characterize the effect of flow during extracorporeal membrane oxygenation.


Assuntos
Oxigenação por Membrana Extracorpórea/métodos , Imunidade/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...