Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Adv Exp Med Biol ; 1429: 1-11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37486513

RESUMO

CRISPR is a revolutionary gene editing technology that has enabled scientists worldwide to explore the cell's genetic blueprint in an unprecedented easy way. In this chapter, we will briefly present the history behind the development of this innovative tool, how it emerged from a natural bacterial mechanism for antiviral defense, its key components (Cas9 endonuclease and single guide RNA), mode of action (DNA cleavage and repair via NHEJ or HDR), and versatility (acting on single- or double-stranded DNA or RNA) for diverse purposes beyond gene editing such as stochastic marking, digital encoding, high-fidelity SNP genotyping, programmed chromosome fission/fusion, gene mapping, nucleic acid detection, regulation of gene expression, DNA/RNA labeling or tracking, and more.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Proteína 9 Associada à CRISPR/metabolismo , RNA , Quebras de DNA de Cadeia Dupla , DNA/genética
2.
J Diabetes Res ; 2022: 3511329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155683

RESUMO

Type 1 diabetes (T1D) arises from autoimmune-mediated destruction of insulin-producing ß-cells leading to impaired insulin secretion and hyperglycemia. T1D is accompanied by DNA damage, oxidative stress, and inflammation, although there is still scarce information about the oxidative stress response and DNA repair in T1D pathogenesis. We used the microarray method to assess mRNA expression profiles in peripheral blood mononuclear cells (PBMCs) of 19 T1D patients compared to 11 controls and identify mRNA targets of microRNAs that were previously reported for T1D patients. We found 277 differentially expressed genes (220 upregulated and 57 downregulated) in T1D patients compared to controls. Analysis by gene sets (GSA and GSEA) showed an upregulation of processes linked to ROS generation, oxidative stress, inflammation, cell death, ER stress, and DNA repair in T1D patients. Besides, genes related to oxidative stress responses and DNA repair (PTGS2, ATF3, FOSB, DUSP1, and TNFAIP3) were found to be targets of four microRNAs (hsa-miR-101, hsa-miR148a, hsa-miR-27b, and hsa-miR-424). The expression levels of these mRNAs and microRNAs were confirmed by qRT-PCR. Therefore, the present study on differential expression profiles indicates relevant biological functions related to oxidative stress response, DNA repair, inflammation, and apoptosis in PBMCs of T1D patients relative to controls. We also report new insights regarding microRNA-mRNA interactions, which may play important roles in the T1D pathogenesis.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , MicroRNAs/farmacologia , Adolescente , Adulto , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatologia , Feminino , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Masculino , MicroRNAs/metabolismo , MicroRNAs/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Regulação para Cima
3.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443169

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by joint destruction and severe morbidity. Cigarette smoking (CS) can exacerbate the incidence and severity of RA. Although Th17 cells and the Aryl hydrocarbon receptor (AhR) have been implicated, the mechanism by which CS induces RA development remains unclear. Here, using transcriptomic analysis, we show that microRNA-132 is specifically induced in Th17 cells in the presence of either AhR agonist or CS-enriched medium. miRNA-132 thus induced is packaged into extracellular vesicles produced by Th17 and acts as a proinflammatory mediator increasing osteoclastogenesis through the down-regulation of COX2. In vivo, articular knockdown of miR-132 in murine arthritis models reduces the number of osteoclasts in the joints. Clinically, RA patients express higher levels of miR-132 than do healthy individuals. This increase is further elevated by cigarette smoking. Together, these results reveal a hitherto unrecognized mechanism by which CS could exacerbate RA and further advance understanding of the impact of environmental factors on the pathogenesis of chronic inflammatory diseases.


Assuntos
Artrite Reumatoide/genética , MicroRNAs/genética , Osteogênese/fisiologia , Adulto , Idoso , Animais , Artrite Experimental/patologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fumar Cigarros/efeitos adversos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Fumaça , Células Th17/efeitos dos fármacos , Células Th17/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos
4.
Front Immunol ; 11: 1039, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547551

RESUMO

Aire is a transcriptional controller in medullary thymic epithelial cells (mTECs) modulating a set of peripheral tissue antigens (PTAs) and non-PTA mRNAs as well as miRNAs. Even miRNAs exerting posttranscriptional control of mRNAs in mTECs, the composition of miRNA-mRNA networks may differ. Under reduction in Aire expression, networks exhibited greater miRNA diversity controlling mRNAs. Variations in the number of 3'UTR binding sites of Aire-dependent mRNAs may represent a crucial factor that influence the miRNA interaction. To test this hypothesis, we analyzed through bioinformatics the length of 3'UTRs of a large set of Aire-dependent mRNAs. The data were obtained from existing RNA-seq of mTECs of wild type or Aire-knockout (KO) mice. We used computational algorithms as FASTQC, STAR and HTSEQ for sequence alignment and counting reads, DESEQ2 for the differential expression, 3USS for the alternative 3'UTRs and TAPAS for the alternative polyadenylation sites. We identified 152 differentially expressed mRNAs between these samples comprising those that encode PTAs as well as transcription regulators. In Aire KO mTECs, most of these mRNAs featured an increase in the length of their 3'UTRs originating additional miRNA binding sites and new miRNA controllers. Results from the in silico analysis were statistically significant and the predicted miRNA-mRNA interactions were thermodynamically stable. Even with no in vivo or in vitro experiments, they were adequate to show that lack of Aire in mTECs might favor the downregulation of PTA mRNAs and transcription regulators via miRNA control. This could unbalance the overall transcriptional activity in mTECs and thus the self-representation.


Assuntos
Regiões 3' não Traduzidas , RNA Mensageiro/genética , Timo/metabolismo , Fatores de Transcrição/genética , Algoritmos , Animais , Antígenos/genética , Sítios de Ligação/genética , Simulação por Computador , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , MicroRNAs/genética , Poliadenilação/genética , Poliendocrinopatias Autoimunes/genética , RNA-Seq , Alinhamento de Sequência , Timo/citologia , Timo/imunologia , Fatores de Transcrição/deficiência , Proteína AIRE
5.
J Oncol ; 2019: 8393769, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31485228

RESUMO

Early detection is crucial for achieving a reduction in breast cancer mortality. Analysis of circulating cell-free microRNAs present in the serum of cancer patients has emerged as a promising new noninvasive biomarker for early detection of tumors and for predicting their molecular classifications. The rationale for this study was to identify subtype-specific molecular profiles of cell-free microRNAs for early detection of breast cancer in serum. Fifty-four early-stage breast cancers with 27 age-matched controls were selected for circulating microRNAs evaluation in the serum. The 54 cases were molecularly classified (luminal A, luminal B, luminal B Her2 positive, Her-2, triple negative). NanoString platform was used for digital detection and quantitation of 800 tagged microRNA probes and comparing the overall differences in serum microRNA expression from breast cancer cases with controls. We identified the 42 most significant (P ≤ 0.05, 1.5-fold) differentially expressed circulating microRNAs in each molecular subtype for further study. Of these microRNAs, 19 were significantly differentially expressed in patients presenting with luminal A, eight in the luminal B, ten in luminal B HER 2 positive, and four in the HER2 enriched subtype. AUC is high with suitable sensitivity and specificity. For the triple negative subtype miR-25-3p had the best accuracy. Predictive analysis of the mRNA targets suggests they encode proteins involved in molecular pathways such as cell adhesion, migration, and proliferation. This study identified subtype-specific molecular profiles of cell-free microRNAs suitable for early detection of breast cancer selected by comparison to the microRNA profile in serum for female controls without apparent risk of breast cancer. This molecular profile should be validated using larger cohort studies to confirm the potential of these miRNA for future use as early detection biomarkers that could avoid unnecessary biopsy in patients with a suspicion of breast cancer.

6.
Artigo em Inglês | MEDLINE | ID: mdl-30050502

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of insulin-producing cells in the pancreas, by direct interactions with autoreactive pancreas infiltrating T lymphocytes (PILs). One of the most important animal models for this disease is the non-obese diabetic (NOD) mouse. Alterations in the NOD mouse thymus during the pathogenesis of the disease have been reported. From the initial migratory disturbances to the accumulation of mature thymocytes, including regulatory Foxp3+ T cells, important mechanisms seem to regulate the repertoire of T cells that leave the thymus to settle in peripheral lymphoid organs. A significant modulation of the expression of extracellular matrix and soluble chemoattractant molecules, in addition to integrins and chemokine receptors, may contribute to the progressive accumulation of mature thymocytes and consequent formation of giant perivascular spaces (PVS) that are observed in the NOD mouse thymus. Comparative large-scale transcriptional expression and network analyses involving mRNAs and miRNAs of thymocytes, peripheral T CD3+ cells and PILs provided evidence that in PILs chemokine receptors and mRNAs are post-transcriptionally regulated by miR-202-3p resulting in decreased activity of these molecules during the onset of T1D in NOD mice. In this review, we discuss the abnormal T-cell development in NOD mice in the context of intrathymic expression of different migration-related molecules, peptides belonging to the family of insulin and insulin-like growth factors as well as the participation of miRNAs as post-transcriptional regulators and their possible influence on the onset of aggressive autoimmunity during the pathogenesis of T1D.

7.
Front Immunol ; 9: 964, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867946

RESUMO

The function of medullary thymic epithelial cells (mTECs) is associated with thymocyte adhesion, which is crucial for the negative selection of autoreactive thymocytes in the thymus. This process represents the root of central tolerance of self-components and prevents the onset of autoimmune diseases. Since thymic epithelia correspond to an important target of donor T cells during the onset of chronic graft-vs-host-disease, mTEC-thymocyte adhesion may have implications for alloimmunity. The Aire and Fezf2 genes function as transcriptome controllers in mTECs. The central question of this study is whether there is a mutual relationship between mTEC-thymocyte adhesion and the control of the mTEC transcriptome and whether Aire is involved in this process. Here, we show that in vitro mTEC-thymocyte adhesion causes transcriptome changes in mTECs and upregulates the transcriptional expression of Aire and Fezf2, as well as cell adhesion-related genes such as Cd80 or Tcf7, among others. Crispr-Cas9-mediated Aire gene disruption demonstrated that this gene plays a role in the process of mTEC-thymocyte adhesion. Consistent with the nuclear localization signal (NLS) encoded by Aire exon 3, which was targeted, we demonstrate that Aire KO-/- mTECs impair AIRE protein localization in the nucleus. Consequently, the loss of function of Aire reduced the ability of these cells to adhere to thymocytes. Their transcriptomes differed from their wild-type Aire+/+ counterparts, even during thymocyte adhesion. A set of mRNA isoforms that encode proteins involved in cell adhesion were also modulated during this process. This demonstrates that both thymocyte interactions and Aire influence transcriptome profiling of mTEC cells.


Assuntos
Células Epiteliais/metabolismo , Timócitos/metabolismo , Timo/citologia , Fatores de Transcrição/genética , Transcriptoma , Animais , Adesão Celular , Diferenciação Celular/imunologia , Células Epiteliais/imunologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Timócitos/imunologia , Timo/imunologia , Ativação Transcricional , Proteína AIRE
8.
Mol Immunol ; 99: 39-52, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29684716

RESUMO

A secondary cervical thymus (CT) is present in the neck region in about 50% of human and mice. CT in mice is an independent and functional organ, which can be colonized by T lymphocyte progenitors and generate thymocytes that are selected by the T cell receptor repertoire following the positive and negative selection. However, CT and the main thoracic thymus (TT) have been shown in mice to have significant functional differences. In this study, we use transcriptional profiling to compare mRNA or miRNAs expression patterns in murine CT and TT. We used these data to perform functional enrichment of the expression signatures and reconstruction of posttranscriptional miRNA-mRNA interaction networks. For this purpose, we compared the transcriptome profiling of paired RNA samples of whole CTs, TTs and parathyroid gland (PT), which was used as an external group, from Foxn1-GFP;Pth-Cre;R26dTomato transgenic mice that differentially label CT and TT. As expected, CT and TT featured comprehensive transcriptome similarity and this suggests that these organs are subjected to correlated transcriptional control. Nevertheless, significant differences were also observed between TT and CT, characterized by 107 differentially expressed (DE) mRNAs, and in 13 DE miRNAs, that in turn established interactions. These results suggest that functional similarity between TT and CT is reflected in their transcriptional activity and that CT functional uniqueness might be under posttranscriptional control.


Assuntos
MicroRNAs/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , Timócitos/fisiologia , Transcriptoma/genética , Animais , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Transgênicos
9.
Immunology ; 153(1): 10-20, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28871661

RESUMO

Twenty years ago, the autoimmune regulator (Aire) gene was associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, and was cloned and sequenced. Its importance goes beyond its abstract link with human autoimmune disease. Aire identification opened new perspectives to better understand the molecular basis of central tolerance and self-non-self distinction, the main properties of the immune system. Since 1997, a growing number of immunologists and molecular geneticists have made important discoveries about the function of Aire, which is essentially a pleiotropic gene. Aire is one of the functional markers in medullary thymic epithelial cells (mTECs), controlling their differentiation and expression of peripheral tissue antigens (PTAs), mTEC-thymocyte adhesion and the expression of microRNAs, among other functions. With Aire, the immunological tolerance became even more apparent from the molecular genetics point of view. Currently, mTECs represent the most unusual cells because they express almost the entire functional genome but still maintain their identity. Due to the enormous diversity of PTAs, this uncommon gene expression pattern was termed promiscuous gene expression, the interpretation of which is essentially immunological - i.e. it is related to self-representation in the thymus. Therefore, this knowledge is strongly linked to the negative selection of autoreactive thymocytes. In this update, we focus on the most relevant results of Aire as a transcriptional and post-transcriptional controller of PTAs in mTECs, its mechanism of action, and its influence on the negative selection of autoreactive thymocytes as the bases of the induction of central tolerance and prevention of autoimmune diseases.


Assuntos
Seleção Clonal Mediada por Antígeno/genética , Seleção Clonal Mediada por Antígeno/imunologia , Timócitos/citologia , Timócitos/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Antígenos/genética , Antígenos/imunologia , Antígenos/metabolismo , Apoptose , Autoimunidade , Biomarcadores , Adesão Celular/genética , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Tolerância Imunológica/genética , Mutação , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Proteína AIRE
10.
J Cell Biochem ; 118(11): 4045-4062, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28407302

RESUMO

We demonstrate that the interaction between miR-450a-5p and miR-28-5p and signal transducer and activator of transcription 1 (STAT1) mRNA correlates with the osteoblastic differentiation of mesenchymal stem cells from human exfoliated deciduous teeth (shed cells). STAT1 negatively regulates runx-related transcription factor 2 (RUNX2), which is an essential transcription factor in this process. However, the elements that trigger osteoblastic differentiation and therefore pause the inhibitory effect of STAT1 need investigation. Usually, STAT1 can be posttranscriptionally regulated by miRNAs. To test this, we used an in vitro model system in which shed cells were chemically induced toward osteoblastic differentiation and temporally analyzed, comparing undifferentiated cells with their counterparts in the early (2 days) or late (7 or 21 days) periods of induction. The definition of the entire functional genome expression signature demonstrated that the transcriptional activity of a large set of mRNAs and miRNAs changes during this process. Interestingly, STAT1 and RUNX2 mRNAs feature contrasting expression levels during the course of differentiation. While undifferentiated or early differentiating cells express high levels of STAT1 mRNA, which was gradually downregulated, RUNX2 mRNA was upregulated toward differentiation. The reconstruction of miRNA-mRNA interaction networks allowed the identification of six miRNAs (miR-17-3p, miR-28-5p, miR-29b, miR-29c-5p, miR-145-3p, and miR-450a-5p), and we predicted their respective targets, from which we focused on miR-450a-5p and miR-28-5p STAT1 mRNA interactions, whose intracellular occurrence was validated through the luciferase assay. Transfections of undifferentiated shed cells with miR-450a-5p or miR-28-5p mimics or with miR-450a-5p or miR-28-5p antagonists demonstrated that these miRNAs might play a role as posttranscriptional controllers of STAT1 mRNA during osteoblastic differentiation. J. Cell. Biochem. 118: 4045-4062, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteoblastos/metabolismo , RNA Mensageiro/metabolismo , Fator de Transcrição STAT1/metabolismo , Pré-Escolar , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Osteoblastos/citologia , Fator de Transcrição STAT1/genética
11.
Front Immunol ; 7: 526, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933063

RESUMO

Autoimmune regulator (Aire) is a transcriptional regulator of peripheral tissue antigens (PTAs) and microRNAs (miRNAs) in medullary thymic epithelial cells (mTECs). In this study, we tested the hypothesis that Aire also played a role as an upstream posttranscriptional controller in these cells and that variation in its expression might be associated with changes in the interactions between miRNAs and the mRNAs encoding PTAs. We demonstrated that downregulation of Aire in vivo in the thymuses of BALB/c mice imbalanced the large-scale expression of these two RNA species and consequently their interactions. The expression profiles of a large set of mTEC miRNAs and mRNAs isolated from the thymuses of mice subjected (or not) to small-interfering-induced Aire gene knockdown revealed that 87 miRNAs and 4,558 mRNAs were differentially expressed. The reconstruction of the miRNA-mRNA interaction networks demonstrated that interactions between these RNAs were under Aire influence and therefore changed when this gene was downregulated. Prior to Aire-knockdown, only members of the miR-let-7 family interacted with a set of PTA mRNAs. Under Aire-knockdown conditions, a larger set of miRNA families and their members established this type of interaction. Notably, no previously described Aire-dependent PTA interacted with the miRNAs, indicating that these PTAs were somehow refractory. The miRNA-mRNA interactions were validated by calculating the minimal free energy of the pairings between the miRNA seed regions and the mRNA 3' UTRs and within the cellular milieu using the luciferase reporter gene assay. These results suggest the existence of a link between transcriptional and posttranscriptional control because Aire downregulation alters the miRNA-mRNA network controlling PTAs in mTEC cells.

12.
Int J Biomater ; 2016: 9169371, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200092

RESUMO

Titanium implants have been extensively used in orthopedic and dental applications. It is well known that micro- and nanoscale surface features of biomaterials affect cellular events that control implant-host tissue interactions. To improve our understanding of how multiscale surface features affect cell behavior, we used microarrays to evaluate the transcriptional profile of osteoblastic cells from human alveolar bone cultured on engineered titanium surfaces, exhibiting the following topographies: nanotexture (N), nano+submicrotexture (NS), and rough microtexture (MR), obtained by modulating experimental parameters (temperature and solution composition) of a simple yet efficient chemical treatment with a H2SO4/H2O2 solution. Biochemical assays showed that cell culture proliferation augmented after 10 days, and cell viability increased gradually over 14 days. Among the treated surfaces, we observed an increase of alkaline phosphatase activity as a function of the surface texture, with higher activity shown by cells adhering onto nanotextured surfaces. Nevertheless, the rough microtexture group showed higher amounts of calcium than nanotextured group. Microarray data showed differential expression of 716 mRNAs and 32 microRNAs with functions associated with osteogenesis. Results suggest that oxidative nanopatterning of titanium surfaces induces changes in the metabolism of osteoblastic cells and contribute to the explanation of the mechanisms that control cell responses to micro- and nanoengineered surfaces.

13.
PLoS One ; 10(11): e0142688, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26606254

RESUMO

In autoimmune type 1 diabetes mellitus (T1D), auto-reactive clones of CD4+ and CD8+ T lymphocytes in the periphery evolve into pancreas-infiltrating T lymphocytes (PILs), which destroy insulin-producing beta-cells through inflammatory insulitis. Previously, we demonstrated that, during the development of T1D in non-obese diabetic (NOD) mice, a set of immune/inflammatory reactivity genes were differentially expressed in T lymphocytes. However, the posttranscriptional control involving miRNA interactions that occur during the evolution of thymocytes into PILs remains unknown. In this study, we postulated that miRNAs are differentially expressed during this period and that these miRNAs can interact with mRNAs involved in auto-reactivity during the progression of insulitis. To test this hypothesis, we used NOD mice to perform, for the first time, a comprehensive survey of miRNA and mRNA expression as thymocytes mature into peripheral CD3+ T lymphocytes and, subsequently, into PILs. Reconstruction of miRNA-mRNA interaction networks for target prediction revealed the participation of a large set of miRNAs that regulate mRNA targets related to apoptosis, cell adhesion, cellular regulation, cellular component organization, cellular processes, development and the immune system, among others. The interactions between miR-202-3p and the Ccr7 chemokine receptor mRNA or Cd247 (Cd3 zeta chain) mRNA found in PILs are highlighted because these interactions can contribute to a better understanding of how the lack of immune homeostasis and the emergence of autoimmunity (e.g., T1D) can be associated with the decreased activity of Ccr7 or Cd247, as previously observed in NOD mice. We demonstrate that these mRNAs are controlled at the posttranscriptional level in PILs.


Assuntos
Complexo CD3/genética , MicroRNAs/genética , Pâncreas/metabolismo , Interferência de RNA , RNA Mensageiro/genética , Receptores CCR7/genética , Linfócitos T/metabolismo , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Análise por Conglomerados , Biologia Computacional/métodos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genes Reporter , Camundongos , Camundongos Endogâmicos NOD , Pâncreas/imunologia , Processamento Pós-Transcricional do RNA , Reprodutibilidade dos Testes , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/imunologia , Timócitos/imunologia , Timócitos/metabolismo , Transcriptoma
14.
Mutat Res ; 776: 98-110, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26364207

RESUMO

The development of type 2 diabetes mellitus (T2D) is associated with a number of genetic and environmental factors. Hyperglycemia, a T2D hallmark, is related to several metabolic complications, comorbidities and increased DNA damage. However, the molecular alterations of a proper glucose control are still unclarified. In this study, we aimed to evaluate DNA damage (comet assay), as well as to compare the transcriptional expression (mRNA and miRNA analyzed by the microarray technique) displayed by peripheral blood mononuclear cells (PBMCs) from three distinct groups: hyperglycemic T2D patients (T2D-H, n=14), non-hyperglycemic T2D patients (T2D-N, n=15), and healthy non-diabetic individuals (n=16). The comet assay revealed significantly (p<0.05) higher levels of DNA damage in T2D-H group compared to both T2D-N and control groups, while a significant difference was not observed between the control and T2D-N groups. After bioinformatics analysis, the differentially expressed mRNAs were subjected to functional enrichment analysis (DAVID) and inflammatory response was among the enriched terms found when comparing T2D-N with controls and T2D-H with T2D-N. Concerning the gene set enrichment and gene set analyses, among the differentially expressed gene sets, three were of interest: regulation of DNA repair (T2D-H versus T2D-N), superoxide response (T2D-H versus control group), and response to endoplasmic reticulum stress (T2D-H versus control group). We also identified miRNAs related with T2D and hyperglycemia not yet associated with these conditions in the literature. Some of the differentially expressed mRNAs were among the predicted targets of the differentially expressed miRNAs. Our results showed the association of hyperglycemia with increased DNA damage and aberrant expression of miRNAs and genes related to several biological processes, such as inflammation, DNA repair, ROS production and antioxidant defense, highlighting the importance of proper glycemic control. Moreover, the transcriptional expression of miRNAs provided novel information for understanding the regulatory mechanisms involved in the T2D progression.


Assuntos
Dano ao DNA , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Hiperglicemia/metabolismo , MicroRNAs/biossíntese , RNA Mensageiro/biossíntese , Transcrição Gênica , Adulto , Idoso , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade
15.
Arch Oral Biol ; 60(4): 593-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25621937

RESUMO

OBJECTIVE: Expression of a large number of genes during differentiation of undifferentiated pulp cells into odontoblastic cells is still unknown, hence the aim of this investigation was to compare undifferentiated pulp cells (OD-21) and odontoblast-like cells (MDPC-23) through the assessment of cell stimulation and gene expression profiling. DESIGN: The cells were cultured and after the experimental periods, there were evaluated cell proliferation and viability as well as alkaline phosphatase activity (ALP) and mineralization nodules. To evaluate gene expression it was used fluorescence cDNA microarray technology in addition to bioinformatics programmes such as SAM (significance analysis of microarrays). Gene expression was validated by Real Time PCR (qPCR). RESULTS: The results showed that viability was above 80% in both cells, cell proliferation and ALP activity was higher in MDPC-23 cells and mineralization nodules were present only in the cultures of odontoblast-like cells. There were observed genes associated to odontogenesis with similar behaviour in both cell types, such as Il10, Traf6, Lef1 and Hspa8. Regions of the heatmap showed differences in induction and repression of genes such as Jak2 and Fas. CONCLUSION: OD-21 cells share many genes with similar behaviour to MDPC-23 cells, suggesting their potential to differentiate into odontoblasts.


Assuntos
Diferenciação Celular/genética , Polpa Dentária/citologia , Odontoblastos/citologia , Odontogênese/genética , Fosfatase Alcalina/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Proliferação de Células/genética , Sobrevivência Celular/genética , Expressão Gênica , Camundongos , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real , Coloração e Rotulagem
16.
Immunobiology ; 220(1): 93-102, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25220732

RESUMO

The downregulation of PTA genes in mTECs is associated with the loss of self-tolerance, and the role of miRNAs in this process is not fully understood. Therefore, we studied the expression of mRNAs and miRNAs in mTECs from autoimmune NOD mice during the period when loss of self-tolerance occurs in parallel with non-autoimmune BALB/c mice. Although the expression of the transcriptional regulator Aire was unchanged, we observed downregulation of a set of PTA mRNAs. A set of miRNAs was also differentially expressed in these mice. The reconstruction of miRNA-mRNA interaction networks identified the controller miRNAs and predicted the PTA mRNA targets. Interestingly, the known Aire-dependent PTAs exhibited pronounced refractoriness in the networking interaction with miRNAs. This study reveals the existence of a new mechanism in mTECs, and this mechanism may have importance in the control of self-tolerance.


Assuntos
Antígenos/genética , Epistasia Genética , Células Epiteliais/metabolismo , MicroRNAs/genética , Interferência de RNA , RNA Mensageiro/genética , Timo/citologia , Fatores de Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Antígenos/imunologia , Análise por Conglomerados , Células Epiteliais/imunologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos , Tolerância a Antígenos Próprios , Fatores de Transcrição/genética , Transcrição Gênica , Proteína AIRE
17.
Diabetes Res Clin Pract ; 105(3): 356-63, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25043705

RESUMO

AIMS: Hyperglycemia leads to increased production of reactive oxygen species (ROS), which reduces cellular antioxidant defenses and induces several DNA lesions. We investigated the effects on DNA damage of a seven-day hospitalization period in patients with type 2 diabetes mellitus (T2DM) to achieve adequate blood glucose levels through dietary intervention and medication treatment, compared with non-diabetic individuals. METHODS: DNA damage levels were evaluated by the alkaline comet assay (with modified and without conventional use of hOGG1 enzyme, which detects oxidized DNA bases) for 10 patients and 16 controls. Real time PCR array method was performed to analyze the transcriptional expression of a set of 84 genes implicated in antioxidant defense and response to oxidative stress in blood samples from T2DM patients (n=6) collected before and after the hospitalization period. RESULTS: The seven-day period was sufficient to improve glycemic control and to significantly decrease (p<0.05) DNA damage levels in T2DM patients, although those levels were slightly higher than those in control subjects. We also found a tendency towards a decrease in the levels of oxidative DNA damage in T2DM patients after the hospitalization period. However, for all genes analyzed, a statistically significant difference in the transcriptional expression levels was not observed. CONCLUSIONS: The study demonstrated that although the transcriptional expression of the genes studied did not show significant alterations, one-week of glycemic control in hospital resulted in a significant reduction in DNA damage levels detected in T2DM patients, highlighting the importance of an adequate glycemic control.


Assuntos
Glicemia/análise , Dano ao DNA , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/terapia , Hiperglicemia/terapia , Estresse Oxidativo/genética , Adulto , Feminino , Perfilação da Expressão Gênica , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/sangue
18.
BMC Med Genomics ; 7: 28, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24885568

RESUMO

BACKGROUND: Type 1 diabetes (T1D) is an autoimmune disease, while type 2 (T2D) and gestational diabetes (GDM) are considered metabolic disturbances. In a previous study evaluating the transcript profiling of peripheral mononuclear blood cells obtained from T1D, T2D and GDM patients we showed that the gene profile of T1D patients was closer to GDM than to T2D. To understand the influence of demographical, clinical, laboratory, pathogenetic and treatment features on the diabetes transcript profiling, we performed an analysis integrating these features with the gene expression profiles of the annotated genes included in databases containing information regarding GWAS and immune cell expression signatures. METHODS: Samples from 56 (19 T1D, 20 T2D, and 17 GDM) patients were hybridized to whole genome one-color Agilent 4x44k microarrays. Non-informative genes were filtered by partitioning, and differentially expressed genes were obtained by rank product analysis. Functional analyses were carried out using the DAVID database, and module maps were constructed using the Genomica tool. RESULTS: The functional analyses were able to discriminate between T1D and GDM patients based on genes involved in inflammation. Module maps of differentially expressed genes revealed that modulated genes: i) exhibited transcription profiles typical of macrophage and dendritic cells; ii) had been previously associated with diabetic complications by association and by meta-analysis studies, and iii) were influenced by disease duration, obesity, number of gestations, glucose serum levels and the use of medications, such as metformin. CONCLUSION: This is the first module map study to show the influence of epidemiological, clinical, laboratory, immunopathogenic and treatment features on the transcription profiles of T1D, T2D and GDM patients.


Assuntos
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Gestacional/genética , Perfilação da Expressão Gênica , Inflamação/genética , Transcriptoma/genética , Adolescente , Adulto , Idoso , Algoritmos , Análise por Conglomerados , Demografia , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/patologia , Diabetes Gestacional/patologia , Feminino , Humanos , Masculino , Cadeias de Markov , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Análise de Componente Principal , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
19.
Gene ; 539(2): 213-23, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24530307

RESUMO

Type 1 diabetes mellitus (T1DM) results from an autoimmune attack against the insulin-producing pancreatic ß-cells, leading to elimination of insulin production. The exact cause of this disorder is still unclear. Although the differential expression of microRNAs (miRNAs), small non-coding RNAs that control gene expression in a post-transcriptional manner, has been identified in many diseases, including T1DM, only scarce information exists concerning miRNA expression profile in T1DM. Thus, we employed the microarray technology to examine the miRNA expression profiles displayed by peripheral blood mononuclear cells (PBMCs) from T1DM patients compared with healthy subjects. Total RNA extracted from PBMCs from 11 T1DM patients and nine healthy subjects was hybridized onto Agilent human miRNA microarray slides (V3), 8x15K, and expression data were analyzed on R statistical environment. After applying the rank products statistical test, the receiver-operating characteristic (ROC) curves were generated and the areas under the ROC curves (AUC) were calculated. To examine the functions of the differentially expressed (p-value<0.01, percentage of false-positives <0.05) miRNAs that passed the AUC cutoff value ≥ 0.90, the database miRWalk was used to predict their potential targets, which were afterwards submitted to the functional annotation tool provided by the Database for Annotation, Visualization, and Integrated Discovery (DAVID), version 6.7, using annotations from the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. We found 57 probes, corresponding to 44 different miRNAs (35 up-regulated and 9 down-regulated), that were differentially expressed in T1DM and passed the AUC threshold of 0.90. The hierarchical clustering analysis indicated the discriminatory power of those miRNAs, since they were able to clearly distinguish T1DM patients from healthy individuals. Target prediction indicated that 47 candidate genes for T1DM are potentially regulated by the differentially expressed miRNAs. After performing functional annotation analysis of the predicted targets, we observed 22 and 12 annotated KEGG pathways for the induced and repressed miRNAs, respectively. Interestingly, many pathways were enriched for the targets of both up- and down-regulated miRNAs and the majority of those pathways have been previously associated with T1DM, including many cancer-related pathways. In conclusion, our study indicated miRNAs that may be potential biomarkers of T1DM as well as provided new insights into the molecular mechanisms involved in this disorder.


Assuntos
Biomarcadores/metabolismo , Diabetes Mellitus Tipo 1/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Adolescente , Adulto , Estudos de Casos e Controles , Análise por Conglomerados , Biologia Computacional , Feminino , Seguimentos , Redes Reguladoras de Genes , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Adulto Jovem
20.
BMC Res Notes ; 6: 491, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24279768

RESUMO

BACKGROUND: Regardless the regulatory function of microRNAs (miRNA), their differential expression pattern has been used to define miRNA signatures and to disclose disease biomarkers. To address the question of whether patients presenting the different types of diabetes mellitus could be distinguished on the basis of their miRNA and mRNA expression profiling, we obtained peripheral blood mononuclear cell (PBMC) RNAs from 7 type 1 (T1D), 7 type 2 (T2D), and 6 gestational diabetes (GDM) patients, which were hybridized to Agilent miRNA and mRNA microarrays. Data quantification and quality control were obtained using the Feature Extraction software, and data distribution was normalized using quantile function implemented in the Aroma light package. Differentially expressed miRNAs/mRNAs were identified using Rank products, comparing T1DxGDM, T2DxGDM and T1DxT2D. Hierarchical clustering was performed using the average linkage criterion with Pearson uncentered distance as metrics. RESULTS: The use of the same microarrays platform permitted the identification of sets of shared or specific miRNAs/mRNA interaction for each type of diabetes. Nine miRNAs (hsa-miR-126, hsa-miR-1307, hsa-miR-142-3p, hsa-miR-142-5p, hsa-miR-144, hsa-miR-199a-5p, hsa-miR-27a, hsa-miR-29b, and hsa-miR-342-3p) were shared among T1D, T2D and GDM, and additional specific miRNAs were identified for T1D (20 miRNAs), T2D (14) and GDM (19) patients. ROC curves allowed the identification of specific and relevant (greater AUC values) miRNAs for each type of diabetes, including: i) hsa-miR-1274a, hsa-miR-1274b and hsa-let-7f for T1D; ii) hsa-miR-222, hsa-miR-30e and hsa-miR-140-3p for T2D, and iii) hsa-miR-181a and hsa-miR-1268 for GDM. Many of these miRNAs targeted mRNAs associated with diabetes pathogenesis. CONCLUSIONS: These results indicate that PBMC can be used as reporter cells to characterize the miRNA expression profiling disclosed by the different diabetes mellitus manifestations. Shared miRNAs may characterize diabetes as a metabolic and inflammatory disorder, whereas specific miRNAs may represent biological markers for each type of diabetes, deserving further attention.


Assuntos
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Gestacional/genética , MicroRNAs/genética , Monócitos/metabolismo , Feminino , Humanos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...