Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(11)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38081076

RESUMO

Laser-induced graphene (LIG) possesses desirable properties for numerous applications. However, LIG formation on biocompatible substrates is needed to further augment the integration of LIG-based technologies into nanobiotechnology. Here, LIG formation on cross-linked sodium alginate is reported. The LIG is systematically investigated, providing a comprehensive understanding of the physicochemical characteristics of the material. Raman spectroscopy, scanning electron microscopy with energy-dispersive x-ray analysis, x-ray diffraction, transmission electron microscopy, Fourier-transform infrared spectroscopy and x-ray photoelectron spectroscopy techniques confirm the successful generation of oxidized graphene on the surface of cross-linked sodium alginate. The influence of laser parameters and the amount of crosslinker incorporated into the alginate substrate is explored, revealing that lower laser speed, higher resolution, and increased CaCl2content leads to LIG with lower electrical resistance. These findings could have significant implications for the fabrication of LIG on alginate with tailored conductive properties, but they could also play a guiding role for LIG formation on other biocompatible substrates.

2.
Phys Chem Chem Phys ; 22(33): 18536-18547, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32780047

RESUMO

In pursuit of the ideal photocatalyst, cheap and stable semiconductor TiO2 is considered to be a good choice if one is able to reduce its band gap and decrease the recombination rate of charge carriers. The approach that offers such improvements for energy conversion applications is the modification of TiO2 with nitrogen and noble metals. However, the origin of these improvements and possibilities for further design of single-atom catalysts are not always straightforward. To shed light on the atomic-scale picture, we modeled the nitrogen-doped (001) anatase TiO2 surface as a support for palladium and platinum single-atom deposition. The thermodynamics of various synthesis routes for Pd/Pt deposition and nitrogen doping is considered based on density functional theory (DFT)-calculated energies, highlighting the effect of nitrogen doping on metal dimer formation and metal-support interaction. XPS analysis of the valence band of the modified TiO2 nanocrystals, and the calculated charge transfer and electronic structure of single-atom catalysts supported on the (001) anatase TiO2 surface provide an insight into modifications occurring in the valence zone of TiO2 due to nitrogen doping and Pd/Pt deposition at the surface. DFT results also show that substitutional nitrogen doping significantly increases metal-support interaction, while interstitial nitrogen doping promotes only Pt-support interaction.

3.
Phys Chem Chem Phys ; 20(20): 13934-13943, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29744500

RESUMO

New electrode materials for alkaline-ion batteries are a timely topic. Among many promising candidates, V2O5 is one of the most interesting cathode materials. While having very high theoretical capacity, in practice, its performance is hindered by its low stability and poor conductivity. As regards the theoretical descriptions of V2O5, common DFT-GGA calculations fail to reproduce both the electronic and crystal structures. While the band gap is underestimated, the interlayer spacing is overestimated as weak dispersion interactions are not properly described within GGA. Here we show that the combination of the DFT+U method and semi-empirical D2 correction can compensate for the drawbacks of the GGA when it comes to the modelling of V2O5. When compared to common PBE calculations, with a modest increase in the computational cost, PBE+U+D2 fully reproduced the experimental band gap of V2O5, while the errors in the lattice parameters are only a few percent. Using the proposed PBE+U+D2 methodology we studied the doping of V2O5 with 3d elements (from Sc to Zn). We show that both the structural and electronic parameters are affected by doping. Most importantly, a significant increase in conductivity is expected upon doping, which is of great importance for the application of V2O5 in metal-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...