Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 60(12): 8347-8367, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33619961

RESUMO

The front-end of the nuclear fuel cycle encompasses several chemical and physical processes used to acquire and prepare uranium for use in a nuclear reactor. These same processes can also be used for weapons or nefarious purposes, necessitating the need for technical means to help detect, investigate, and prevent the nefarious use of nuclear material and nuclear fuel cycle technology. Over the past decade, a significant research effort has investigated uranium compounds associated with the front-end of the nuclear fuel cycle, including uranium ore concentrates (UOCs), UF4, UF6, and UO2F2. These efforts have furthered uranium chemistry with an aim to expand and improve the field of nuclear forensics. Focus has been given to the morphology of various uranium compounds, trace elemental and chemical impurities in process samples of uranium compounds, the degradation of uranium compounds, particularly under environmental conditions, and the development of improved or new techniques for analysis of uranium compounds. Overall, this research effort has identified relevant chemical and physical characteristics of uranium compounds that can be used to help discern the origin, process history, and postproduction history for a sample of uranium material. This effort has also identified analytical techniques that could be brought to bear for nuclear forensics purposes. Continued research into these uranium compounds should yield additional relevant chemical and physical characteristics and analytical approaches to further advance front-end nuclear fuel cycle forensics capabilities.

2.
Macromol Chem Phys ; 216(9): 1024-1032, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-31595137

RESUMO

Polymers formed from N-isopropylacrylamide (NIPAM) are highly water soluble and undergo a temperature-induced phase transition to an insoluble state. The phase behavior is determined by competing hydrophilic and hydrophobic forces. In this report, additional insight regarding the effect soluble metals have on the phase transition process is provided by showing that cation solvation aids with stabilization of hydrophobic forces. This reduces barriers to rehydration and decreases thermodynamic entropy and enthalpy, obtained with variable-temperature 1H nuclear magnetic resonance spectroscopy of NIPAM hydrogels in D2O, NaCl, MgCl2, and CaCl2. For the series of cations studied, it is observed that the order of increasing effect to facilitate the phase transition is Ca2+ < Mg2+ < Na+. NaCl and MgCl2 exhibited similar effects on the thermodynamics of the collapsing process. However, significant differences in the phase transition thermodynamics are observed between MgCl2 and CaCl2 salt solutions. The influence on Stage 1 enthalpy and entropy values for CaCl2 solutions is approximately half that of the MgCl2 solutions. This difference is likely related to their charge density of Ca2+, which is approximately half that of Mg2+.

3.
Proteins ; 79(12): 3364-73, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21748801

RESUMO

Proton uptake or release controls many important biological processes, such as energy transduction, virus replication, and catalysis. Accurate pK(a) prediction informs about proton pathways, thereby revealing detailed acid-base mechanisms. Physics-based methods in the framework of molecular dynamics simulations not only offer pK(a) predictions but also inform about the physical origins of pK(a) shifts and provide details of ionization-induced conformational relaxation and large-scale transitions. One such method is the recently developed continuous constant pH molecular dynamics (CPHMD) method, which has been shown to be an accurate and robust pK(a) prediction tool for naturally occurring titratable residues. To further examine the accuracy and limitations of CPHMD, we blindly predicted the pK(a) values for 87 titratable residues introduced in various hydrophobic regions of staphylococcal nuclease and variants. The predictions gave a root-mean-square deviation of 1.69 pK units from experiment, and there were only two pK(a)'s with errors greater than 3.5 pK units. Analysis of the conformational fluctuation of titrating side-chains in the context of the errors of calculated pK(a) values indicate that explicit treatment of conformational flexibility and the associated dielectric relaxation gives CPHMD a distinct advantage. Analysis of the sources of errors suggests that more accurate pK(a) predictions can be obtained for the most deeply buried residues by improving the accuracy in calculating desolvation energies. Furthermore, it is found that the generalized Born implicit-solvent model underlying the current CPHMD implementation slightly distorts the local conformational environment such that the inclusion of an explicit-solvent representation may offer improvement of accuracy.


Assuntos
Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Simulação por Computador , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína , Proteínas/genética , Eletricidade Estática , Estatística como Assunto/métodos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...