Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Org Chem ; 88(19): 13813-13824, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37722076

RESUMO

A new approach to the marine alkaloid cylindricine C afforded its previously unreported (±)-2,13-di-epi stereoisomer as the major product along with a minor amount of the racemic parent alkaloid. Key steps included a stereoselective dianion alkylation of a monoester of 1,2-cyclohexanedicarboxylic acid and an annulation based on the tandem conjugate addition of a primary amine to an acetylenic sulfone, followed by intramolecular acylation of the resulting sulfone-stabilized carbanion. The cis-azadecalin moiety thus formed, comprising the cyclohexane A-ring and enaminone B-ring of the products, was further elaborated by the selenenyl chloride-induced cyclofunctionalization of a pendant butenyl substituent with the enaminone moiety, followed by a seleno-Pummerer reaction. Desulfonylation and enaminone reduction afforded the final products. Molecular modeling and X-ray crystallography provided further insight into these processes.

2.
Bioorg Med Chem ; 25(7): 2091-2104, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28284860

RESUMO

Parasitic protozoa employ a salvage pathway to synthesize purines and generate essential active nucleotides, whereas mammals are capable of their de novo biosynthesis. This difference provides opportunity for the design of potential new antiprotozoan compounds. A series of 47 adenosine analogues was prepared with modifications at the 2-, 6- and 5'-positions, based on the hypothesis that such compounds would serve as substrates for protozoan nucleoside salvage enzymes, while remaining refractory in mammalian cells. The nucleosides were designed to produce toxic metabolites upon cleavage to the corresponding purine base by the parasite. Three 7-deazaguanosine derivatives were prepared with similar objectives. All of these compounds were tested in vitro against T. brucei (African sleeping sickness), T. cruzi (Chagas' disease), L. donovani (leishmaniasis) and P. falciparum (malaria). In order to determine the therapeutic selectivity indices (SI) of the antiprotozoan nucleosides, their cytotoxicities toward a rat myoblast cell line were also determined. One adenosine derivative proved highly effective against P. falciparum (IC50=110nM and SI=1010, while a modified guanosine displayed potent activities against L. donovani (IC50=60nM, SI=2720) and T. brucei (IC50=130nM, SI=1250), as well as moderate activity against T. cruzi (IC50=3.4µM, SI=48). These results provide proof of concept for the nucleoside-based antiprotozoan strategy, as well as potential lead compounds for further optimization and validation.


Assuntos
Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Animais , Antiprotozoários/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Concentração Inibidora 50 , Leishmania donovani/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Infravermelho , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...