Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 14745, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30283151

RESUMO

Photosystem II (PSII) reaction centre D1 protein of oxygenic phototrophs is pivotal for sustaining photosynthesis. Also, it is targeted by herbicides and herbicide-resistant weeds harbour single amino acid substitutions in D1. Conservation of D1 primary structure is seminal in the photosynthetic performance in many diverse species. In this study, we analysed built-in and environmentally-induced (high temperature and high photon fluency - HT/HL) phenotypes of two D1 mutants of Chlamydomonas reinhardtii with Ala250Arg (A250R) and Ser264Lys (S264K) substitutions. Both mutations differentially affected efficiency of electron transport and oxygen production. In addition, targeted metabolomics revealed that the mutants undergo specific differences in primary and secondary metabolism, namely, amino acids, organic acids, pigments, NAD, xanthophylls and carotenes. Levels of lutein, ß-carotene and zeaxanthin were in sync with their corresponding gene transcripts in response to HT/HL stress treatment in the parental (IL) and A250R strains. D1 structure analysis indicated that, among other effects, remodelling of H-bond network at the QB site might underpin the observed phenotypes. Thus, the D1 protein, in addition to being pivotal for efficient photosynthesis, may have a moonlighting role in rewiring of specific metabolic pathways, possibly involving retrograde signalling.


Assuntos
Chlamydomonas reinhardtii/genética , Transdução de Sinal Luminoso/genética , Fótons , Fotossíntese/genética , Complexo de Proteína do Fotossistema II/química , Substituição de Aminoácidos , Aminoácidos/metabolismo , Carotenoides/biossíntese , Reprogramação Celular , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/efeitos da radiação , Ácidos Dicarboxílicos/metabolismo , Transporte de Elétrons/efeitos da radiação , Expressão Gênica , Temperatura Alta , Ligação de Hidrogênio , Redes e Vias Metabólicas/genética , Modelos Moleculares , Mutação , NAD/metabolismo , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Pigmentos Biológicos/biossíntese , Estrutura Secundária de Proteína , Xantofilas/biossíntese
2.
Plant Dis ; 100(2): 444-452, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30694124

RESUMO

The soilborne fungus Rosellinia necatrix is the causal agent of white root rot disease on numerous plant species, including apple, which, together with the ability to survive in soil for long periods, makes this pathogen difficult to control. To understand the origins of pathogen infestation, a survey of diseased apple orchards in the northeast of Italy was conducted and 35 isolates of R. necatrix were characterized with intersimple sequence repeat markers. High genetic heterogeneity among the collected isolates suggested multiple preexisting sources of inoculum and not movement of infected soil or plant material from a single source. Greenhouse trials confirmed that, as with some other crops, soil water content and temperature were the main factors influencing infection of apple plants, while organic fertilizers and the incorporation of apple wood residues were less important. The efficacy of Trichoderma atroviride SC1 as a biocontrol agent against R. necatrix greatly depended on the timing of application. It reduced white root rot incidence on apple seedlings only if treatment was applied at least 1 week before planting.

3.
PLoS One ; 8(5): e64352, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691201

RESUMO

Space missions have enabled testing how microorganisms, animals and plants respond to extra-terrestrial, complex and hazardous environment in space. Photosynthetic organisms are thought to be relatively more prone to microgravity, weak magnetic field and cosmic radiation because oxygenic photosynthesis is intimately associated with capture and conversion of light energy into chemical energy, a process that has adapted to relatively less complex and contained environment on Earth. To study the direct effect of the space environment on the fundamental process of photosynthesis, we sent into low Earth orbit space engineered and mutated strains of the unicellular green alga, Chlamydomonas reinhardtii, which has been widely used as a model of photosynthetic organisms. The algal mutants contained specific amino acid substitutions in the functionally important regions of the pivotal Photosystem II (PSII) reaction centre D1 protein near the QB binding pocket and in the environment surrounding Tyr-161 (YZ) electron acceptor of the oxygen-evolving complex. Using real-time measurements of PSII photochemistry, here we show that during the space flight while the control strain and two D1 mutants (A250L and V160A) were inefficient in carrying out PSII activity, two other D1 mutants, I163N and A251C, performed efficient photosynthesis, and actively re-grew upon return to Earth. Mimicking the neutron irradiation component of cosmic rays on Earth yielded similar results. Experiments with I163N and A251C D1 mutants performed on ground showed that they are better able to modulate PSII excitation pressure and have higher capacity to reoxidize the QA (-) state of the primary electron acceptor. These results highlight the contribution of D1 conformation in relation to photosynthesis and oxygen production in space.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/fisiologia , Meio Ambiente Extraterreno , Mutação , Fenótipo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/efeitos da radiação , Luz , Modelos Moleculares , Oxirredução , Oxigênio/metabolismo , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/química , Pressão , Conformação Proteica , Estabilidade Proteica
4.
PLoS One ; 8(4): e61851, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613953

RESUMO

This study was prompted by increasing concerns about ecological damage and human health threats derived by persistent contamination of water and soil with herbicides, and emerging of bio-sensing technology as powerful, fast and efficient tool for the identification of such hazards. This work is aimed at overcoming principal limitations negatively affecting the whole-cell-based biosensors performance due to inadequate stability and sensitivity of the bio-recognition element. The novel bio-sensing elements for the detection of herbicides were generated exploiting the power of molecular engineering in order to improve the performance of photosynthetic complexes. The new phenotypes were produced by an in vitro directed evolution strategy targeted at the photosystem II (PSII) D1 protein of Chlamydomonas reinhardtii, using exposures to radical-generating ionizing radiation as selection pressure. These tools proved successful to identify D1 mutations conferring enhanced stability, tolerance to free-radical-associated stress and competence for herbicide perception. Long-term stability tests of PSII performance revealed the mutants capability to deal with oxidative stress-related conditions. Furthermore, dose-response experiments indicated the strains having increased sensitivity or resistance to triazine and urea type herbicides with I(50) values ranging from 6 × 10(-8) M to 2 × 10(-6) M. Besides stressing the relevance of several amino acids for PSII photochemistry and herbicide sensing, the possibility to improve the specificity of whole-cell-based biosensors, via coupling herbicide-sensitive with herbicide-resistant strains, was verified.


Assuntos
Técnicas Biossensoriais , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/genética , Engenharia Genética/métodos , Herbicidas/toxicidade , Mutação/genética , Adaptação Fisiológica/efeitos dos fármacos , Substituição de Aminoácidos , Atrazina/toxicidade , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/fisiologia , Clorofila/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Fluorescência , Radicais Livres/toxicidade , Humanos , Limite de Detecção , Nêutrons , Estresse Oxidativo/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Prótons
5.
PLoS One ; 6(1): e16216, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21249156

RESUMO

Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues more sensitive to oxidative damage in the eukaryotic/cyanobacterial proteins compared to their bacterial orthologs. These results led us to hypothesize an archaean atmosphere less challenging in terms of ionizing radiation than the present one.


Assuntos
Adaptação Fisiológica , Simulação por Computador , Evolução Molecular Direcionada , Fotossíntese/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Radiação Ionizante , Transporte de Elétrons/genética , Radicais Livres/farmacologia , Mutagênese Sítio-Dirigida , Estresse Oxidativo , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação
6.
Plant Cell ; 19(9): 2719-35, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17873098

RESUMO

In Arabidopsis thaliana, the BEL1-like TALE homeodomain protein family consists of 13 members that form heterodimeric complexes with the Class 1 KNOX TALE homeodomain proteins, including SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP). The BEL1-like protein BELLRINGER (BLR) functions together with STM and BP in the shoot apex to regulate meristem identity and function and to promote correct shoot architecture. We have characterized two additional BEL1-LIKE HOMEODOMAIN (BLH) proteins, SAWTOOTH1 (BLH2/SAW1) and SAWTOOTH2 (BLH4/SAW2) that, in contrast with BLR, are expressed in lateral organs and negatively regulate BP expression. saw1 and saw2 single mutants have no obvious phenotype, but the saw1 saw2 double mutant has increased leaf serrations and revolute margins, indicating that SAW1 and SAW2 act redundantly to limit leaf margin growth. Consistent with this hypothesis, overexpression of SAW1 suppresses overall growth of the plant shoot. BP is ectopically expressed in the leaf serrations of saw1 saw2 double mutants. Ectopic expression of Class 1 KNOX genes in leaves has been observed previously in loss-of-function mutants of ASYMMETRIC LEAVES (AS1). Overexpression of SAW1 in an as1 mutant suppresses the as1 leaf phenotype and reduces ectopic BP leaf expression. Taken together, our data suggest that BLH2/SAW1 and BLH4/SAW2 establish leaf shape by repressing growth in specific subdomains of the leaf at least in part by repressing expression of one or more of the KNOX genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Alelos , Contagem de Células , Tamanho Celular , Flores/citologia , Flores/genética , Genes de Plantas , Teste de Complementação Genética , Proteínas de Homeodomínio/genética , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Epiderme Vegetal/citologia , Brotos de Planta/crescimento & desenvolvimento , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...