Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36679467

RESUMO

In recent years, different groups have developed algorithms to control the stiffness of a robotic device through the electromyographic activity collected from a human operator. However, the approaches proposed so far require an initial calibration, have a complex subject-specific muscle model, or consider the activity of only a few pairs of antagonist muscles. This study described and tested an approach based on a biomechanical model to estimate the limb stiffness of a multi-joint, multi-muscle system from muscle activations. The "virtual stiffness" method approximates the generated stiffness as the stiffness due to the component of the muscle-activation vector that does not generate any endpoint force. Such a component is calculated by projecting the vector of muscle activations, estimated from the electromyographic signals, onto the null space of the linear mapping of muscle activations onto the endpoint force. The proposed method was tested by using an upper-limb model made of two joints and six Hill-type muscles and data collected during an isometric force-generation task performed with the upper limb. The null-space projection of the muscle-activation vector approximated the major axis of the stiffness ellipse or ellipsoid. The model provides a good approximation of the voluntary stiffening performed by participants that could be directly implemented in wearable myoelectric controlled devices that estimate, in real-time, the endpoint forces, or endpoint movement, from the mapping between muscle activation and force, without any additional calibrations.


Assuntos
Músculo Esquelético , Extremidade Superior , Humanos , Músculo Esquelético/fisiologia , Extremidade Superior/fisiologia , Movimento/fisiologia , Algoritmos , Fenômenos Biomecânicos , Eletromiografia
2.
Proc Inst Mech Eng H ; 234(10): 1094-1105, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32633209

RESUMO

The increasing number of postural disorders emphasizes the central role of the vertebral spine during gait. Indeed, clinicians need an accurate and non-invasive method to evaluate the effectiveness of a rehabilitation program on spinal kinematics. Accordingly, the aim of this work was the use of inertial sensors for the assessment of angles among vertebral segments during gait. The spine was partitioned into five segments and correspondingly five inertial measurement units were positioned. Articulations between two adjacent spine segments were modeled with spherical joints, and the tilt-twist method was adopted to evaluate flexion-extension, lateral bending and axial rotation. In total, 18 young healthy subjects (9 males and 9 females) walked barefoot in three different conditions. The spinal posture during gait was efficiently evaluated considering the patterns of planar angles of each spine segment. Some statistically significant differences highlighted the influence of gender, speed and imposed cadence. The proposed methodology proved the usability of inertial sensors for the assessment of spinal posture and it is expected to efficiently point out trunk compensatory pattern during gait in a clinical context.


Assuntos
Marcha , Coluna Vertebral , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Postura , Amplitude de Movimento Articular , Rotação
3.
J Neural Eng ; 17(1): 016058, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31958778

RESUMO

OBJECTIVE: In the last decades, many EMG-controlled robotic devices were developed. Since stiffness control may be required to perform skillful interactions, different groups developed devices whose stiffness is real-time controlled based on EMG signal samples collected from the operator. However, this control strategy may be fatiguing. In this study, we proposed and experimentally validated a novel stiffness control strategy, based on the average muscle co-contraction estimated from EMG samples collected in the previous 1 or 2 s. APPROACH: Nine subjects performed a tracking task with their right wrist in five different sessions. In four sessions a haptic device (Hi-5) applied a sinusoidal perturbing torque. In Baseline session, co-contraction reduced the effect of the perturbation only by stiffening the wrist. In contrast, during aided sessions the perturbation amplitude was also reduced (mimicking the effect of additional stiffening provided by EMG-driven robotic device) either proportionally to the co-contraction exerted by the subject sample-by-sample (Proportional), or according to the average co-contraction exerted in the previous 1 s (Integral 1s), or 2 s (Integral 2s). Task error, metabolic cost during the tracking task, perceived fatigue, and the median EMG frequency calculated during a sub-maximal isometric torque generation tasks that alternated with the tracking were compared across sessions. MAIN RESULTS: Positive effects of the reduction of the perturbation provided by co-contraction estimation was identified in all the investigated variables. Integral 1s session showed lower metabolic cost with respect to the Proportional session, and lower perceived fatigue with respect to both the Proportional and the Integral 2s sessions. SIGNIFICANCE: This study's results showed that controlling the stiffness of an EMG-driven robotic device proportionally to the operator's co-contraction, averaged in the previous 1 s, represents the best control strategy because it required less metabolic cost and led to a lower perceived fatigue.


Assuntos
Eletromiografia/métodos , Contração Isométrica/fisiologia , Fadiga Muscular/fisiologia , Amplitude de Movimento Articular/fisiologia , Robótica/métodos , Punho/fisiologia , Adulto , Exoesqueleto Energizado , Feminino , Humanos , Masculino , Robótica/instrumentação , Adulto Jovem
4.
Sensors (Basel) ; 19(19)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547181

RESUMO

Wearable sensors are de facto revolutionizing the assessment of standing balance. The aim of this work is to review the state-of-the-art literature that adopts this new posturographic paradigm, i.e., to analyse human postural sway through inertial sensors directly worn on the subject body. After a systematic search on PubMed and Scopus databases, two raters evaluated the quality of 73 full-text articles, selecting 47 high-quality contributions. A good inter-rater reliability was obtained (Cohen's kappa = 0.79). This selection of papers was used to summarize the available knowledge on the types of sensors used and their positioning, the data acquisition protocols and the main applications in this field (e.g., "active aging", biofeedback-based rehabilitation for fall prevention, and the management of Parkinson's disease and other balance-related pathologies), as well as the most adopted outcome measures. A critical discussion on the validation of wearable systems against gold standards is also presented.


Assuntos
Doença de Parkinson/fisiopatologia , Equilíbrio Postural/fisiologia , Dispositivos Eletrônicos Vestíveis , Acidentes por Quedas , Humanos
5.
Bioengineering (Basel) ; 6(3)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394803

RESUMO

In flexion-extension motion, the interaction of several ligaments and bones characterizes the elbow joint stability. The aim of this preliminary study was to quantify the relative motion of the ulna with respect to the humerus in two human upper limbs specimens and to investigate the constraints role for maintaining the elbow joint stability in different section conditions. Two clusters of four markers were fixed respectively to the ulna and humerus, and their trajectory was recorded by a motion capture system during functional orthopedic maneuver. Considering the posterior bundle of medial collateral complex (pMUCL) and the coronoid, two section sequences were executed. The orthopedic maneuver of compression, pronation and varus force was repeated at 30°, 60° and 90° flexion for the functional investigation of constraints. Ulna deflection was compared to a baseline elbow flexion condition. With respect to the intact elbow, the coronoid osteotomy influences the elbow stability at 90° (deflection = 11.49 ± 17.39 mm), while small differences occur at 30° and 60°, due to ligaments constraint. The contemporary pMUCL section and coronoid osteotomy causes elbow instability, with large deflection at 30° (deflection = 34.40 ± 9.10 mm), 60° (deflection = 45.41 ± 18.47 mm) and 90° (deflection = 52.16 ± 21.92 mm). Surgeons may consider the pMUCL reconstruction in case of unfixable coronoid fracture.

6.
IEEE Trans Neural Syst Rehabil Eng ; 26(11): 2145-2152, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30334801

RESUMO

Functional electrical stimulation of lower limb muscles during rowing provides a means for the cardiovascular conditioning in paraplegia. The possibility of shaping stimulation profiles according to changes in knee angle, so far conceived as changes in seat position, may help circumventing open issues associated with muscle fatigue and movement coordination. Here, we present a subject-specific biomechanical model for the estimation of knee joint angle during indoor rowing. Anthropometric measurements and foot and seat positions are inputs to the model. We tested our model on two samples of elite rowers; 15 able-bodied, and 11 participants in the Rio 2016 Paralympic games. Paralympic rowers presented minor physical disabilities (LTA-PD classification), enabling them to perform the full rowing cycle (with legs, trunks, and arms). Knee angle was estimated from the rowing machine seat position, measured with a linear encoder, and transmitted wirelessly to a computer. Key results indicate the root mean square error (RMSE) between estimated and measured angles did not depend on group and stroke rate ( ). Significantly greater RMSE values were observed, however, within the rowing cycle ( ), reaching on average 8 deg in the mid-recovery phase. Differences between estimated and measured knee angle values resulted in slightly earlier (5%) detection of knee flexion, regardless of the group and stroke rate considered. Offset of knee extension, knee angle at catch and range of knee motion were identified equally well with our model and with inertial sensors. These results suggest our model describes accurately the movement of knee joint during indoor rowing.


Assuntos
Exercício Físico/fisiologia , Articulação do Joelho/anatomia & histologia , Articulação do Joelho/fisiologia , Modelos Biológicos , Paraplegia/fisiopatologia , Paraplegia/reabilitação , Adulto , Algoritmos , Fenômenos Biomecânicos , Desenho de Equipamento , Ergometria , Feminino , Voluntários Saudáveis , Humanos , Articulação do Joelho/fisiopatologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Muscles Ligaments Tendons J ; 7(4): 493-502, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29721450

RESUMO

The elbow ligamentous and bony structures play essential roles in the joint stability. Nevertheless, the contribution of different structures to joint stability is not yet clear and a comprehensive experimental investigation into the ligament and osseous constraints changes in relation to joint motions would be uphill and somehow unattainable, due to the impossibility of obtaining all the possible configurations on the same specimen. Therefore, a predictive tool of the joint behavior after the loss of retentive structures would be helpful in designing reconstructive surgeries and in pre-operative planning. In this work, a multibody model consisting of bones and non-linear ligamentous structures is presented and validated through comparison with experimental data. An accurate geometrical model was equipped with non-linear ligaments bundles between optimized origin and insertion points. The joint function was simulated according to maneuvers accomplished in published experimental studies which explored the posteromedial rotatory instability (PMRI) in coronoid and posterior medial collateral ligament (PB) deficient elbows. Moreover, a complete design of experiments (DOE) was explored, investigating the influence of the elbow flexion degree, of the coronoid process and of the medial collateral ligaments (MCL) structures (anterior and posterior bundles) in the elbow joint opening. The implemented computational model accurately predicted the joint behavior with intact and deficient stabilizing structures at each flexion degree, and highlighted the statistically significant influence of the MCL structures (P<0.05) on the elbow stability. The predictive ability of this multibody elbow joint model let foresee that future investigations under different loading scenarios and injured or surgically reconstructed states could be effectively simulated, helping the ligaments reconstruction optimization in terms of bone tunnel localizations and grafts pre-loading. LEVEL OF EVIDENCE: V.

8.
J Adv Res ; 7(6): 971-978, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27857844

RESUMO

Paralympic Cross-Country sit-skiers use adaptive equipment, with a resulting gesture similar to double poling techniques adopted by able-bodied skiers. Despite the similarity, a specific attention on the gesture performed by sit-skiers is needed. The paper focuses on the sledge kinematic and on inertia effect of upper body motion which is translated in a propulsive effect in the early stage of the pushing cycle. In particular a group of 7 elite sit skiers of class LW10 were recorded with a video-based markerless motion capture technique during 1 km sprint Paralympic race. A biomechanical model, consisting of 7 anatomical points and 4 technical ones, is used to track the kinematics from video-images, then body segments, joints of interest and relative angles are evaluated. In this paper we focus on the biomechanics of the poling cycle, in particular prior to the onset of pole plant. The aim was to evaluate the contribution of the upper body to the early stage of the propulsive action. To this porpoise body inertial forces for each athlete are calculated using kinematic data, then normalized with respect to the athlete's body mass. The results show that in LW10 sit-skiers an important sledge propulsion, prior to the onset of pole plant, is provided by the inertial effect, due to the upper body region (arms and forearms) motion.

9.
Acta Bioeng Biomech ; 17(4): 32-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26899585

RESUMO

PURPOSE: accurate assessment of human joint parameters is a critical issue for the quantitative movement analysis, due to a direct influence on motion patterns. In this study three different known functional methods are experimentally compared to identify knee joint kinematics for further gait and motion analysis purposes. METHODS: taking into account the human knee physiology complexity, within its roto-translation, the study is conducted on a lower limb mechanical analogue with a polycentric hinge-based kinematic model. The device mimics a joint with a mobile axis of rotation whose position is definable. Sets of reflective markers are placed on the dummy and flexion-extension movements are imposed to the shank segment. Marker positions are acquired using an optoelectronic motion capture system (Vicon 512). RESULTS: acquired markers' positions are used as input data to the three functional methods considered. These ones approximate the polycentric knee joint with a fixed single axis model. Different ranges of motion and number of markers are considered for each functional method. Results are presented through the evaluation of accuracy and precision concerning both misalignment and distance errors between the estimated axis of rotation and the instantaneous polycentric one, used as reference. CONCLUSION: the study shows the feasibility of the identification of joint parameters with functional approaches applied on a polycentric mechanism, differently from those usually conceived by the reviewed algorithms. Moreover, it quantifies and compares the approximation errors using different algorithms, by varying number and position of markers, as well ranges of motion.


Assuntos
Articulação do Joelho/fisiologia , Modelos Biológicos , Movimento/fisiologia , Algoritmos , Fenômenos Biomecânicos , Simulação por Computador , Estudos de Viabilidade , Marcha , Humanos , Perna (Membro) , Amplitude de Movimento Articular/fisiologia , Rotação
10.
Proc Inst Mech Eng H ; 228(11): 1183-92, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25500863

RESUMO

The human joint kinematics is an interesting topic in biomechanics and turns to be useful for the analysis of human movement in several fields. A crucial issue regards the assessment of joint parameters, like axes and centers of rotation, due to the direct influence on human motion patterns. A proper accuracy in the estimation of these parameters is hence required. On the whole, stereophotogrammetry-based predictive methods and, as an alternative, functional ones can be used to this end. This article presents a new functional algorithm for the assessment of knee joint parameters, based on a polycentric hinge model for the knee flexion-extension. The proposed algorithm is discussed, identifying its fields of application and its limits. The techniques for estimating the joint parameters from the metrological point of view are analyzed, so as to lay the groundwork for enhancing and eventually replacing predictive methods, currently used in the laboratories of human movement analysis. This article also presents an assessment of the accuracy associated with the whole process of measurement and joint parameters estimation. To this end, the presented functional method is tested through both computer simulations and a series of experimental laboratory tests in which swing motions were imposed to a polycentric mechanical analogue and a stereophotogrammetric system was used to record them.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Articulação do Joelho/anatomia & histologia , Articulação do Joelho/fisiologia , Fotogrametria/métodos , Exame Físico/métodos , Humanos , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Fotogrametria/instrumentação , Amplitude de Movimento Articular , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Clin J Sport Med ; 22(1): 58-64, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22222588

RESUMO

OBJECTIVE: To analyze the biomechanics of the double poling (DP) gesture in cross-country disabled sit-skiers in the field during competition. DESIGN: Cross-sectional research. SETTING: One-kilometer sprint race, Winter Paralympic Games, Vancouver 2010, Canada. PARTICIPANTS: Paralympic athletes: 35 men and 15 women, classified in all the 5 classes of the sit-skier category. INTERVENTION: Elite sit-skiers, with different disabilities, were recorded with a high-speed markerless stereophotogrammetric camera system. Reference points were semiautomatically tracked frame-by-frame on video images, according to a biomechanical model consisting of 7 anatomical and 4 technical points. MAIN OUTCOME MEASURES: Coordinates of anatomical and technical points were evaluated for 2-dimensional kinematic analysis of the push gesture both with reference to a ground-fixed frame and with respect to the athletes' seat on the sledges. RESULTS: Several graphical results represent the development of the DP gesture of each athlete with respect to both ground reference frame and sledge reference frame. The progression of the gesture is depicted by body and pole stick diagrams, trends of reference point positions and their gradients, and body joint trajectories in space. In addition, kinematic biomechanical parameters (eg, joints' range of motion) and technical parameters (eg, pole incline, sledge velocity) are reported. CONCLUSIONS: This research demonstrates the feasibility of a markerless kinematic analysis of the poling gesture on a contest field. Results point out a wide variability of the gesture due to the residual functional capabilities and sitting postures of each athlete. However, the poling cycles of subjects classified into different classes present similar features. An original segmentation of the DP gesture in a sequence of 3 phases is proposed in the article.


Assuntos
Fenômenos Biomecânicos , Pessoas com Deficiência , Esqui/fisiologia , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Postura , Amplitude de Movimento Articular , Gravação em Vídeo
12.
Int J Med Robot ; 7(4): 441-51, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22113978

RESUMO

BACKGROUND: Image-guided neurosurgery usually involves a point-pair registration between two spaces, associating the patient in the operating room with pre-operative image scans. The distribution and number of fiducial markers during registration are critical for the expected error at the target point. METHODS: A genetic algorithm has been designed to provide an optimal marker configuration. The solution, visualized on a 3D head reconstruction, is intended as a guideline for the surgeon to properly place the markers. However, deviations from ideal configurations occur during marker placement; moreover, the actual target is not a point, but a region. The consequent decrease of target accuracy is statistically investigated. RESULTS: A requirement on target minimum accuracy can be satisfied in the operating room not only by setting the number of markers for the optimized fiducial configuration, but also by considering the inevitable sources of error. CONCLUSIONS: Quantifying the sources of error that affect a genetic-algorithm-based optimization shows that it is still convenient. Target point correct individuation is particularly important, as it strongly influences the optimization performance.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/cirurgia , Marcadores Fiduciais , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Modelos Anatômicos , Neuronavegação/métodos , Simulação por Computador , Análise de Falha de Equipamento , Humanos , Aumento da Imagem/instrumentação , Imageamento Tridimensional/instrumentação , Neuronavegação/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...