Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Adv Res ; 8(3): 289-295, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28337346

RESUMO

The present study principally sought to investigate the effect of green tea extract (GTE) supplementation on hepatic mitochondrial DNA (mtDNA) damage in alcohol receiving rats. MtDNA was isolated from hepatic tissues of albino wistar rats after alcohol treatment with and without GTE supplementation. Entire displacement loop (D-loop) of mtDNA was screened by PCR-Sanger's sequencing method. In addition, mtDNA deletions and antioxidant activity were measured in hepatic tissue of all rats. Results showed increased frequency of D-loop mutations in alcoholic rats (ALC). DNA mfold analysis predicted higher free energy for 15507C and 16116C alleles compared to their corresponding wild alleles which represents less stable secondary structures with negative impact on overall mtDNA function. Interestingly, D-loop mutations observed in ALC rats were successfully restored on GTE supplementation. MtDNA deletions were observed in ALC rats, but intact native mtDNA was found in ALC + GTE group suggesting alcohol induced oxidative damage of mtDNA and ameliorative effect of GTE. Furthermore, markedly decreased activities of glutathione peroxidise, superoxide dismutase, catalase and glutathione content were identified in ALC rats; however, GTE supplementation significantly (P < 0.05) restored these levels close to normal. In conclusion, green tea could be used as an effective nutraceutical against alcohol induced mitochondrial DNA damage.

2.
Mitochondrial DNA A DNA Mapp Seq Anal ; 28(5): 632-637, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27159714

RESUMO

Mitochondrial displacement loop (D-loop) is the hot spot for mitochondrial DNA (mtDNA) alterations which influence the generation of cellular reactive oxygen species. In the present study, we sequenced the entire mitochondrial D-loop region (1124 bp) of colorectal cancer (CRC) patients (n = 174) and controls (n = 170) of south Indian origin to identify significant mutations/polymorphisms. Our results showed 152 polymorphisms in the D-loop region of patients and/or controls. Polymorphisms were predominantly located in hypervariable region I (54.6%) than in II (45.4%) of D-loop region. The frequencies of 310'C' insertion (p = 0.0078), T16189C (p = 0.0097) variants and 310'C'ins/16189C haplotype (p = 0.0029) were significantly higher in cases than in controls. Furthermore, strong linkage disequilibrium was observed between nucleotide position 310 and 16189 in cases (D'=0.68) as compared with controls (D'=0.27). In conclusion, mitochondrial D-loop sequence alterations may constitute inherent risk factor for CRC.


Assuntos
Neoplasias Colorretais/genética , DNA Mitocondrial/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , População Branca/genética , DNA Mitocondrial/química , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Índia , Desequilíbrio de Ligação , Masculino , Mitocôndrias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...