Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 3): 128005, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949275

RESUMO

The low bioavailability of hydrophobic compounds, however, limits their medicinal use. Hydrogel beads made of biopolymers can be employed as controlled delivery systems and as a carrier to carry curcumin molecules. In this study, encapsulation of curcumin is done within the hydrogel by using Polylactic acid. The prepared SA/Cur-PLA and SA/Cur beads were examined using FTIR, SEM, TGA, NMR, and, XRD to study the interaction between drug and polymer. The developed bead's curcumin encapsulation efficiency was found to be 81.47 % in SA/Cur-PLA. Curcumin's release kinetics have been studied in systems (SGF, pH 1.2, and SCF, pH 7.4) that simulate oral consumption, which possess good pH sensitivity. The in vitro drug release studies of SA/Cur-PLA beads suggest that the curcumin release was significantly increased in a controlled manner and within 12 h, the cumulative release of curcumin was accomplished. In vitro hemolysis study shows a 7.93 % hemolysis rate which suggests that the produced bead is hemocompatible. For SA/Cur-PLA and SA/Cur, cytotoxicity evaluation and antimicrobial study was performed. Results show that both hydrogels are cytocompatible and antimicrobial in nature. It was found that biopolymer-based hydrogel beads enhanced the bioavailability of curcumin, antioxidant, biodegradable, and considered an effective carrier for the oral delivery of several hydrophobic nutraceuticals.


Assuntos
Anti-Infecciosos , Curcumina , Humanos , Curcumina/química , Hidrogéis/química , Portadores de Fármacos/química , Alginatos/química , Hemólise , Poliésteres/química
2.
Int J Biol Macromol ; 253(Pt 4): 126979, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37739290

RESUMO

In order to reduce the harmful effects of synthetic non-biodegradable hydrogel, biopolymers have attracted attention, particularly for use in slow-release fertilizers. The current attempt intends to develop a hydrogel from biopolymers for sustainable release of water and nutrients in soil. Here, guar gum is used as a polysaccharide, MMA as a monomer, KPS as an initiator, and Polylactic acid as a cross-linker. Further investigation is done to study synthesized hydrogel in the development of wheat crop. Biodegradation study shows that it's environmentally favorable and degradable, contributing nutrients to the soil as it decomposes. Fertilizer release studies in soil and water show that the timing of the nutrient release is delayed, improving soil water holding capacity and retention studies. The agronomic parameters show that fertilizers-loaded hydrogel has a positive effect on physiological, morphological characteristics like shoot length, root length, number of shoots and roots, shoot weight and root weight, chlorophyll content, and most notably, fruiting efficiency is enhanced as compared with commercially available hydrogel. ATR-FTIR, SEM-EDX, TGA-DTA, and XRD analysis used to confirm successful loading of fertilizers and biodegradation of hydrogel. The encouraging findings suggested that this hydrogel could be used as a multifunctional, fertilizers-loaded hydrogel in crop production.


Assuntos
Fertilizantes , Hidrogéis , Hidrogéis/farmacologia , Fertilizantes/análise , Triticum , Solo , Poliésteres , Água/análise , Biopolímeros , Metilmetacrilatos
3.
Microorganisms ; 11(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37630489

RESUMO

Cotton stalk, a waste product in agriculture, serves as a beneficial, low-cost material as a medium for microbial synthesis of lactic acid as desired for polylactic acid synthesis. Cotton stalk was used as a substrate for microbial lactic acid synthesis, and a novel strain of Lactococcus cremoris was reported to synthesize 51.4 g/L lactic acid using cellulose recovered from the cotton stalk. In total, 18 Lactobacillus isolates were isolated from kitchen waste, soil, sugarcane waste, and raw milk samples screened for maximum lactic acid production. It was found that one of the Lactococcus cremoris isolates was found to synthesize maximum lactic acid at a concentration of 51.4 g/L lactic acid in the hydrolysate prepared from cotton stalk. The upstream process parameters included 10% inoculum size, hydrolysate containing reducing sugars 74.23 g/L, temperature 37 °C, agitation 220 rpm, production age 24 h. Only the racemic (50:50) mixture of D-LA and L-LA (i.e., D/L-LA) is produced during the chemical synthesis of lactic acid, which is undesirable for the food, beverage, pharmaceutical, and biomedical industries because only the L-form is digestible and is not suitable for biopolymer, i.e., PLA-based industry where high optically purified lactic acid is required. Furthermore, polylactic acid was synthesized through direct polycondensation methods using various catalysts such as chitosan, YSZ, and Sb2O3. PLA is biocompatible and biodegradable in nature (its blends and biocomposites), supporting a low-carbon and circular bioeconomy.

4.
Int J Biol Macromol ; 223(Pt A): 652-662, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36356878

RESUMO

Cross-linked polymer networks with three-dimensional structures known as hydrogels absorb and retain a large amount of water. Because of their properties, hydrogel materials have been considered a boon in agriculture science. In the present investigation, guar gum cross-linked polylactic acid hydrogel is synthesized using MMA as monomer and optimized using a central composite design of response surface methodology for better swelling. The studied input variables are monomer concentration, initiator concentration, and cross-linker concentration at constant pH and temperature. The constructed response model has been tested using the analysis of variance (ANOVA), where the model F-value of 4.64 indicates that the model is significant. The R2 value (0.806) (multiple correlation coefficient) and the standard deviation for the quadratic model were both found to be 4.27. A separate validation experiment is conducted to ensure the quadratic model is sufficient. The hydrogel synthesis was confirmed by characterization techniques like FTIR spectroscopy, SEM, TGA, XRD, and water absorption studies. Synthesized hydrogels swell maximum in water and least in 0.9 % NaCl solution. The present work highlights the development of guar gum-based super-absorbent hydrogels, which are biodegradable and lead to potential application in agriculture, especially in drought regions.


Assuntos
Galactanos , Hidrogéis , Hidrogéis/química , Concentração de Íons de Hidrogênio , Galactanos/química , Gomas Vegetais/química , Mananas/química , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água
5.
J Fluoresc ; 26(2): 577-83, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26678758

RESUMO

Phycocyanin is a natural brilliant blue colored, fluorescent protein, which is commonly present in cyanobacteria. In this study, C-phycocyanin was extracted and purified from Spirulina platensis, which are multicellular and filamentous cyanobacteria of greater importance because of its various biological and pharmacological potential. It was analyzed for its binding affinity towards blood cells, algal cells, genomic DNA of microalgae, and bacteria at different temperature and incubation time. It showed good binding affinity with these components even at low concentration of 2.5 µM. The purpose of this study was to evaluate the applicability of C-phycocyanin as a green fluorescent dye substituting carcinogenic chemical dyes.


Assuntos
Estruturas Celulares/metabolismo , Ficocianina/química , Ficocianina/metabolismo , Spirulina/metabolismo , Animais , Plaquetas/metabolismo , Bovinos , DNA Bacteriano/metabolismo , Eritrócitos/metabolismo , Escherichia coli/metabolismo , Fluorescência , Genoma Bacteriano , Linfócitos/metabolismo , Microalgas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...