Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 575: 65-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27417925

RESUMO

The application of flavin-dependent halogenases is hampered by their lack of stability under reaction conditions. However, first attempts to improve halogenase stability by error-prone PCR have resulted in mutants with higher temperature stability. To facilitate the screening for mutants with higher activity, a high-throughput assay was developed. Formation of cross-linked enzyme aggregates (CLEAs) of halogenases has increased halogenase lifetime by a factor of about 10, and CLEAs have been used to produce halogenated tryptophan in gram scale. Analyses of the substrate specificity of tryptophan halogenases have shown that they accept a much broader range of substrates than previously thought. The introduction of tryptophan halogenase genes into bacteria and plants led to the in vivo formation of peptides containing halogenated tryptophan or novel tryptophan-derived alkaloids, respectively. The halogen atoms in these compounds could be chemically exchanged against other substituents by cross-coupling reactions leading to novel compounds. Site-directed mutageneses have been used to modify the substrate specificity and the regioselectivity of flavin-dependent tryptophan halogenases. Since many flavin-dependent halogenases only accept protein-bound substrates, enzymatic and chemoenzymatic syntheses for protein-tethered substrates were developed, and the synthesized substrates were used in enzymatic halogenation reactions.


Assuntos
Bactérias/enzimologia , Flavinas/metabolismo , Mutagênese Sítio-Dirigida/métodos , Oxirredutases/metabolismo , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Estabilidade Enzimática , Oxirredutases/química , Oxirredutases/genética , Agregados Proteicos , Estereoisomerismo , Especificidade por Substrato
2.
J Biol Chem ; 276(22): 18765-74, 2001 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-11376004

RESUMO

The anthracycline-like polyketide drug elloramycin is produced by Streptomyces olivaceus Tü2353. Elloramycin has antibacterial activity against Gram-positive bacteria and also exhibits antitumor activity. From a cosmid clone (cos16F4) containing part of the elloramycin biosynthesis gene cluster, three genes (elmMI, elmMII, and elmMIII) have been cloned. Sequence analysis and data base comparison showed that their deduced products resembled S-adenosylmethionine-dependent O-methyltransferases. The genes were individually expressed in Streptomyces albus and also coexpressed with genes involved in the biosynthesis of l-rhamnose, the 6-deoxysugar attached to the elloramycin aglycon. The resulting recombinant strains were used to biotransform three different elloramycin-type compounds: l-rhamnosyl-tetracenomycin C, l-olivosyl-tetracenomycin C, and l-oleandrosyl-tetracenomycin, which differ in their 2'-, 3'-, and 4'-substituents of the sugar moieties. When only the three methyltransferase-encoding genes elmMI, elmMII, and elmMIII were individually expressed in S. albus, the methylating activity of the three methyltransferases was also assayed in vitro using various externally added glycosylated substrates. From the combined results of all of these experiments, it is proposed that methyltransferases ElmMI, ElmMII, and ElmMIII are involved in the biosynthesis of the permethylated l-rhamnose moiety of elloramycin. ElmMI, ElmMII, and ElmMIII are responsible for the consecutive methylation of the hydroxy groups at the 2'-, 3'-, and 4'-position, respectively, after the sugar moiety has been attached to the aglycon.


Assuntos
Antraquinonas/metabolismo , Antibacterianos/metabolismo , Streptomyces/metabolismo , Sequência de Aminoácidos , Sistema Livre de Células , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Clonagem Molecular , Cosmídeos/metabolismo , DNA/metabolismo , Glicosídeos/química , Glicosilação , Metilação , Metiltransferases/genética , Modelos Químicos , Modelos Genéticos , Dados de Sequência Molecular , Naftacenos/química , Proteínas Recombinantes/metabolismo , Ramnose/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Tempo
3.
Chem Biol ; 8(3): 253-63, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11306350

RESUMO

BACKGROUND: Elloramycin is an anthracycline-like antitumor drug related to tetracenomycin C which is produced by Streptomyces olivaceus Tü2353. Structurally is a tetracyclic aromatic polyketide derived from the condensation of 10 acetate units. Its chromophoric aglycon is glycosylated with a permethylated L-rhamnose moiety at the C-8 hydroxy group. Only limited information is available about the genes involved in the biosynthesis of elloramycin. From a library of chromosomal DNA from S. olivaceus, a cosmid (16F4) was isolated that contains part of the elloramycin gene cluster and when expressed in Streptomyces lividans resulted in the production of a non-glycosylated intermediate in elloramycin biosynthesis, 8-demethyl-tetracenomycin C (8-DMTC). RESULTS: The expression of cosmid 16F4 in several producers of glycosylated antibiotics has been shown to produce tetracenomycin derivatives containing different 6-deoxysugars. Different experimental approaches showed that the glycosyltransferase gene involved in these glycosylation events was located in 16F4. Using degenerated oligoprimers derived from conserved amino acid sequences in glycosyltransferases, the gene encoding this sugar flexible glycosyltransferase (elmGT) has been identified. After expression of elmGT in Streptomyces albus under the control of the erythromycin resistance promoter, ermEp, it was shown that elmG can transfer different monosaccharides (both L- and D-sugars) and a disaccharide to 8-DMTC. Formation of a diolivosyl derivative in the mithramycin producer Streptomyces argillaceus was found to require the cooperative action of two mithramycin glycosyltransferases (MtmGI and MtmGII) responsible for the formation of the diolivosyl disaccharide, which is then transferred by ElmGT to 8-DMTC. CONCLUSIONS: The ElmGT glycosyltransferase from S. olivaceus Tü2353 can transfer different sugars into the aglycon 8-DMTC. In addition to its natural sugar substrate L-rhamnose, ElmGT can transfer several L- and D-sugars and also a diolivosyl disaccharide into the aglycon 8-DMTC. ElmGT is an example of sugar flexible glycosyltransferase and can represent an important tool for combinatorial biosynthesis.


Assuntos
Antraquinonas/metabolismo , Antibacterianos/biossíntese , Glicosiltransferases/genética , Streptomyces/enzimologia , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Clonagem Molecular , Biblioteca Gênica , Glicosiltransferases/química , Dados de Sequência Molecular , Naftacenos/metabolismo , Alinhamento de Sequência , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...