Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 929: 172596, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38657821

RESUMO

We studied the occurrence of dissolved thiolated Arsenic (As) in legacy tailings systems in Ontario and Nova Scotia, Canada, and used aqueous and mineralogical speciation analyses to assess its governing geochemical controls. Surface-accessible and inundated tailings in Cobalt, Ontario, contained ∼1 wt-% As mainly hosted in secondary arsenate minerals (erythrite, yukonite, and others) and traces of primary sulfide minerals (cobaltite, gersdorffite and others). Significant fractions of thiolated As (up to 5.9 % of total dissolved As) were detected in aqueous porewater and surface water samples from these sites, comprising mostly monothioarsenate, and smaller amounts of di- and tri-thioarsenates as well as methylated thioarsenates. Tailings at the Goldenville and Montague sites in Nova Scotia contained less (<0.5 wt-%) As, hosted mostly in arsenopyrite and As-bearing pyrite, than the Cobalt sites, but exhibited higher proportions of dissolved thiolated As (up to 17.3 % of total dissolved As, mostly mono- and di-thioarsenate and traces of tri-thioarsenate). Dissolved thiolated As was most abundant in sub-oxic porewaters and inundated tailings samples across the studied sites, and its concentrations were strongly related to the prevailing redox conditions and porewater hydrochemistry, and to a lesser extent, the As-bearing mineralogy. Our novel results demonstrate that thiolated As species play an important role in the cycling of As in mine waste systems and surrounding environments, and should be considered in mine waste management strategies for high-As sites.

2.
Sci Total Environ ; 888: 164188, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37201837

RESUMO

Ball milling has emerged as a promising destructive technique for treating per- and polyfluoroalkyl substances (PFAS)-impacted soils. Environmental media properties such as reactive species generated upon ball milling and particle size are postulated to influence the effectiveness of the technology. In this study, four media types amended with perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) were planetary ball milled to investigate destruction, fluoride recovery without additional co-milling reagents and the relationship between PFOA and PFOS destruction, particle size during milling, and electron generation. Silica sand, nepheline syenite sand, calcite and marble were sieved to achieve similar initial particle sizes (6/35 distribution), amended with PFOA and PFOS, and milled for 4 h. Particle size analysis was conducted throughout milling and 2,2-diphenyl-1-picrylhydrazyl (DPPH•) was used as a radical scavenger to assess electron generation from the four media types. Particle size reduction was observed to be positively correlated to PFOA and PFOS destruction and DPPH• neutralization (demonstrating electron generation by milling) in silica sand and nepheline syenite sand. Milling of a fine fraction (< 500 µm) of silica sand revealed less destruction compared to the 6/35 distribution suggesting the ability to fracture grains in silicate media is integral to PFOA and PFOS destruction. DPPH• neutralization was demonstrated in all four amended media types, confirming silicate sands and calcium carbonates generate electrons as a reactive species during ball milling. Fluoride loss as a function of milling time was observed in all amended media types. A sodium fluoride (NaF) spiked was used to quantify fluoride loss in the media independent of PFAS. A method was developed using the NaF-amended media fluoride concentrations to estimate the total fluorine liberated from PFOA and PFOS by ball milling. Estimates produced suggest complete recovery of theoretical fluorine yield is obtained. Data from this study was used to propose a reductive destruction mechanism for PFOA and PFOS.

3.
Environ Sci Technol ; 56(22): 15489-15498, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36279175

RESUMO

The transport of per- and polyfluoroalkyl substances (PFAS) in soil and groundwater is important for site investigation, risk characterization, and remediation planning. The adsorption of PFAS at air-water interfaces has been shown to significantly contribute to PFAS retention, with subsequent effects on concentrations and the time scales of transport. In this study, column experiments were conducted to investigate the transport of perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and 6:2 fluorotelomer sulfonate (6:2 FTS) individually and in binary mixtures in the presence of a trapped gas phase, using clean sands to isolate adsorption to air-water interfaces. Consistent with previous studies, the transport of PFOS, PFOA, and 6:2 FTS was retarded by adsorption at the air-water interface, with greater retention of PFOS due to its higher affinity for the air-water interface. Chromatographic separation occurred in the experiments using binary mixtures of PFOS and PFOA, with greater retention at lower influent concentrations. The mixture experiments also showed enhanced breakthrough of PFOA in the presence of PFOS, where effluent concentrations of PFOA were temporarily greater than the influent concentration prior to the breakthrough of PFOS. This enhanced breakthrough was attributed to competition between PFOS and PFOA for adsorption to the air-water interface.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Porosidade , Caprilatos , Água
4.
Sci Total Environ ; 835: 155506, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35483472

RESUMO

There is a need for destructive technologies for per- and polyfluoroalkyl substances (PFAS) in soil. While planetary ball mill have been shown successful degradation of PFAS, there are issues surrounding scale up (maximum size is typically 0.5 L cylinders). While having lower energy outputs, horizontal ball mills, for which scale up is not a limiting factor, already exist at commercial/industrial sizes from the mining, metallurgic and agricultural industries, which could be re-purposed. This study evaluated the effectiveness of horizontal ball mills in degrading perfluorooctanesulfonate (PFOS), 6:2 fluorotelomer sulfonate (6:2 FTSA), and aqueous film forming foam (AFFF) spiked on nepheline syenite sand. Horizontal ball milling was also applied to two different soil types (sand dominant and clay dominant) collected from a firefighting training area (FFTA). Liquid chromatography tandem mass spectrometry was used to track 21 target PFAS throughout the milling process. High-resolution accurate mass spectrometry was also used to identify the presence and degradation of 19 non-target fluorotelomer substances, including 6:2 fluorotelomer sulfonamido betaine (FtSaB), 7:3 fluorotelomer betaine (FtB), and 6:2 fluorotelomer thioether amido sulfonate (FtTAoS). In the presence of potassium hydroxide (KOH), used as a co-milling reagent, PFOS, 6:2 FTSA, and the non-target fluorotelomer substances in the AFFF were found to undergo upwards of 81%, 97%, and 100% degradation, respectively. Despite the inherent added complexity associated with field soils, better PFAS degradation was observed on the FFTA soils over the spiked NSS, and more specifically, on the FFTA clay over the FFTA sand. These results held through scale-up, going from the 1 L to the 25 L cylinders. The results of this study support further scale-up in preparation for on-site pilot tests.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Argila , Fluorocarbonos/análise , Areia , Solo , Água/análise , Poluentes Químicos da Água/análise
5.
Sci Total Environ ; 806(Pt 3): 151248, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34715213

RESUMO

Silver nanomaterials (Ag NMs) have been used in a variety of commercial products to take advantage of their antimicrobial properties. However, there are concerns that these AgNMs can be released during/after use and enter wastewater streams, potentially impacting aquatic systems or accumulating in wastewater biosolids. Biosolids, which are a residual of wastewater treatment processes, have been found to contain AgNMs and are frequently used as agricultural fertilizer. Since the function of soil microbial communities is imperative to nutrient cycling and agricultural productivity, it is important to characterize and assess the effects that silver nanomaterials could have in agricultural soils. In this study agricultural soil was amended with pristine engineered (PVP-coated or uncoated AgNMs), aged silver (sulphidized or released from textiles) nanomaterials, and ionic silver to determine the fate and toxicity over the course of three months. Exposures were carried out at various environmentally relevant concentrations (1 and 10 mg Ag/kg soil) representing between 30 to over 800 years of equivalent biosolid loadings. Over thirteen different methodologies and measures were used throughout this study to assess for potential effects of the silver nanomaterials on soil, including microbial community composition, average well colour development (AWCD) and enzymatic activity. Overall, the AgNM exposures did not exhibit significant toxic effects to the soil microbial communities in terms of density, activity, function and diversity. However, the positive ionic silver treatment (100 mg Ag/kg soil) resulted in suppression to microbial activity while also resulting in significantly higher populations of Frankia alni (nitrogen-fixer) and Arenimonas malthae (phytopathogen) as compared to the negative control (p < 0.05, Tukey HSD) which warrants further investigation.


Assuntos
Nanopartículas Metálicas , Microbiota , Nanoestruturas , Poluentes do Solo , Nanopartículas Metálicas/toxicidade , Nanoestruturas/toxicidade , Prata/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Têxteis
6.
Sci Total Environ ; 765: 142722, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33268250

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are manmade, fluorinated organic chemicals which have been identified as persistent organic pollutants. PFAS have surface active properties that have made them suitable for applications in oil- and water-resistant products, as well as many firefighting foams. No on-site remediation strategies exist to treat PFAS impacted soils. Mechanochemical remediation of PFOS- and PFOA-amended sand via a planetary ball mill was studied. The effect of sand mass, KOH as a co-milling reagent, and water saturation on the degradation of PFOA and PFOS was evaluated. By 4 h of milling concentrations were reduced by up to 98% for PFOS-amended dry sand and 99% for PFOA-amended dry sand without the addition of a co-milling reagent. Water saturation was determined to be a significant hindrance on the mechanochemical destruction of PFOS and PFOA. A maximum of 89% of fluoride was recovered from PFOS-amended sand when KOH was used as a co-milling reagent. It is hypothesized that reactive particles generated from the fracture of sand grains react with PFAS molecules to initiate destruction, which can result in full defluorination. Milling experiments were also conducted on soils from a Canadian firefighting training area (FFTA), demonstrating that PFOS concentrations can be reduced by up to 96% in site soils. For the first time, ball milling for the remediation of PFAS in environmental media has been demonstrated using amended sand and legacy soils from a FFTA.

7.
Environ Sci Technol ; 54(19): 12631-12640, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32822535

RESUMO

This study explored smoldering combustion for remediating polyfluoroalkyl substance (PFAS)-impacted granular activated carbon (GAC) and PFAS-contaminated soil. GAC, both fresh and PFAS-loaded, was employed as the supplemental fuel supporting smoldering in mixtures with sand (≈175 mg PFAS/kg GAC-sand), with PFAS-spiked, laboratory-constructed soil (≈4 mg PFAS/kg soil), and with a PFAS-impacted field soil (≈0.2 mg PFAS/kg soil). The fate of PFAS and fluorine was quantified with soil and emission analyses, including targeted PFAS and suspect screening as well as hydrogen fluoride and total fluorine. Results demonstrated that exceeding 35 g GAC/kg soil resulted in self-sustained smoldering with temperatures exceeding 900 °C. Post-treatment PFAS concentrations of the treated soil were near (2 experiments) or below (7 experiments) detection limits (0.0004 mg/kg). Further, 44% of the initial PFAS on GAC underwent full destruction, compared to 16% of the PFAS on soil. Less than 1% of the initial PFAS contamination on GAC or soil was emitted as PFAS in the quantifiable analytical suite. Results suggest that the rest were emitted as altered, shorter-chain PFAS and volatile fluorinated compounds, which were scrubbed effectively with GAC. Total organic fluorine analysis proved useful for PFAS-loaded GAC in sand; however, analyzing soils suffered from interference from non-PFAS. Overall, this study demonstrated that smoldering has significant potential as an effective remediation technique for PFAS-impacted soils and PFAS-laden GAC.


Assuntos
Fluorocarbonos , Poluentes do Solo , Carvão Vegetal , Poluição Ambiental , Fluorocarbonos/análise , Solo , Poluentes do Solo/análise
8.
Sci Total Environ ; 712: 135994, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31931194

RESUMO

We collected over 40 groundwater samples from a per- and polyfluoroalkyl substances (PFAS) impacted legacy fire fighting training area in Canada to develop an in-depth assessment of the relationship between PFAS and in situ microbial communities. Results suggest differential transport of PFAS of differing chain-length and head group. There is also evidence of PFAS degradation, in particular 6:2 FTS degradation. Although PFAS constituents were not major drivers of microbial community structure, the relative abundance of over one hundred individual genera were significantly associated with PFAS chemistry. For example, lineages within the Oxalobacteraceae family had strong negative correlations with PFAS, whilst the Desulfococcus genus has strong positive correlations. Results also suggest a range of genera may have been stimulated at low to mid-range concentrations (e.g., Gordonia and Acidimicrobium), with some genera potentially inhibited at high PFAS concentrations. Any correlations identified need to be further investigated to determine the underlying reasons for observed associations as this is an open field site with the potential for many confounding factors. Positive correlations may ultimately provide important insights related to development of biodegradation technologies for PFAS impacted sites, while negative correlations further improve our understanding of the potential negative effects of PFAS on ecosystem health.


Assuntos
Água Subterrânea , Microbiota , Canadá , Fluorocarbonos , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...