Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 14(17): 6636-6647, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35438095

RESUMO

Two-dimensional (2D) transition metal dichalcogenide (TMDC) heterostructure is a new age strategy to achieve high electrocatalytic activity and ion storage capacity. The less complex and cost-effective applicability of the large-area TMDC heterostructure (HS) for energy applications require more research. Herein, we report the MoSe2@WSe2 nanohybrid HS electrocatalyst prepared using liquid exfoliated nanocrystals, followed by direct electrophoretic deposition (EPD). The improved catalytic activity is attributed to the exposure of catalytic active sites on the edge of nanocrystals after liquid exfoliation and the synergistic effect arises at HS interfaces between the MoSe2 and WSe2 nanocrystals. As predicted, the HS catalyst achieves a lower overpotential of 158 mV, a smaller Tafel slope of 46 mV dec-1 for a current density of 10 mA cm-2, and is stable for a long time. The flexible symmetric supercapacitor (FSSC) based on the HS catalyst demonstrates the excellent specific capacitance (Csp) of 401 F g-1 at 1 A g-1, 97.20% capacitance retention after 5000 cycles and high flexible stability over 1000 bending cycles. This work presents a less complex and solution-processed efficient catalyst for future electrochemical energy applications.

2.
ACS Appl Mater Interfaces ; 11(4): 4093-4102, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30605298

RESUMO

The solar response ability and low-cost fabrication of the photoanode are important factors for the effective output of the photoelectrochemical system. Modification of the photoanode by which its ability to absorb irradiation can be manipulated has gained tremendous attention. Here, we demonstrated the MoSe2, WSe2, and MoSe2/WSe2 nanocrystal thin films prepared by the liquid-phase exfoliated and electrophoresis methods. Atomic force microscopy and high-resolution transmission electron microscopy show that the liquid exfoliated nanocrystals have a few layered dimensions with good crystallinity. Scanning electron microscopy demonstrated uniform distribution and randomly oriented nanocrystals, having a homogeneous shape and size. X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectra confirm the equal contribution of MoSe2 and WSe2 nanocrystals in the formation of the MoSe2/WSe2 heterojunction. Because of superior absorption of MoSe2/WSe2 heterojunction in the visible region and type-II heterojunction band alignment, in situ measurement of heterojunction electrode shows almost 1.5 times incident photo-to-current conversion efficiency and photoresponsivity in comparison to individual material electrodes. Our result clearly indicates the influence of heterojunction formation between liquid exfoliated nanocrystals on effective separation of photogenerated exciton and enhances charge carrier transfer, which leads to the improvement in photoelectrochemical performance. Liquid exfoliated nanosheet-based heterojunction is attractive as efficient photoanodes for the photoelectrochemical systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...