Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 287: 119354, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35422303

RESUMO

Herein, the repaglinide-loaded hydrogel particles of carboxyethyl xanthan gum (CEXG) and carboxymethyl xanthan gum (CMXG) were fabricated, and controlled drug delivery performance was assessed. The XG derivatives were characterized by FTIR analyses, degree of substitution, and cytotoxicity assay. CEXG: CMXG (1:2) hydrogel particles had maximum drug entrapment efficiency of 92%. The hydrogel particles swelled a maximum of about 2.25 times in phosphate buffer (pH 6.8) than that in acidic medium (pH 1.2) in 2 h. The particles discharged 97% drug in simulated gastrointestinal pH in 4 h. The acetylation of hydrogel particles reduced the drug entrapment efficiency to 78%; however, it extended drug release up to 8 h, obeying anomalous diffusion. DSC and X-ray diffraction analyses suggested amorphous dispersion of repaglinide after entrapment. Preclinically, the acetylated hydrogels caused a maximum 52.8% reduction in blood glucose level and effectively lowered blood glucose up to 8 h. Hence, the acetylated CEXG: CMXG hydrogel particles could help control diabetes.


Assuntos
Diabetes Mellitus , Hidrogéis , Glicemia , Carbamatos , Humanos , Hidrogéis/química , Piperidinas , Polissacarídeos Bacterianos/química
2.
RSC Adv ; 10(45): 27103-27136, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35515783

RESUMO

Natural polysaccharides are well known for their biocompatibility, non-toxicity and biodegradability. These properties are also inherent to xanthan gum (XG), a microbial polysaccharide. This biomaterial has been extensively investigated as matrices for tablets, nanoparticles, microparticles, hydrogels, buccal/transdermal patches, tissue engineering scaffolds with different degrees of success. However, the native XG has its own limitations with regards to its susceptibility to microbial contamination, unusable viscosity, poor thermal and mechanical stability, and inadequate water solubility. Chemical modification can circumvent these limitations and tailor the properties of virgin XG to fulfill the unmet needs of drug delivery, tissue engineering, oil drilling and other applications. This review illustrates the process of chemical modification and/crosslinking of XG via etherification, esterification, acetalation, amidation, and oxidation. This review further describes the tailor-made properties of novel XG derivatives and their potential application in diverse fields. The physicomechanical modification and its impact on the properties of XG are also discussed. Overall, the recent developments on XG derivatives are very promising to progress further with polysaccharide research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...