Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 483: 116832, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38266872

RESUMO

Iron deficiency anemia is caused by many pathological conditions like chronic kidney disease (CKD), inflammation, malnutrition and gastrointestinal abnormality. Current treatments that are erythropoiesis stimulating agents (ESAs) and iron supplementation are inadequate and often lead to tolerance and/or toxicity. Desidustat, a prolyl hydroxylase (PHD) inhibitor, is clinically used for the treatment of anemia with CKD. In this study, we investigated the effect of desidustat on iron deficiency anemia (IDA). IDA was induced in C57BL6/J mice by iron deficient diet feeding. These mice were then treated with desidustat (15 mg/kg, PO) and FeSO4 (20 mg/kg) for five weeks and effect of the treatment on hematology, iron homeostasis, and bone marrow histology was observed. Effect of desidustat on iron metabolism in inflammation (LPS)-induced iron deficiency was also assessed. Both, Desidustat and FeSO4, increased MCV (mean corpuscular volume), MCH (mean corpuscular hemoglobin), hemoglobin, and HCT (hematocrit) in blood and increased iron in serum, liver, and spleen. Desidustat increased MCHC (mean corpuscular hemoglobin concentration) while FeSO4 treatment did not alter it. FeSO4 treatment significantly increased iron deposition in liver, and spleen, while desidustat increased iron in circulation and demonstrated efficient iron utilization. Desidustat increased iron absorption, serum iron and decreased hepcidin without altering tissue iron, while FeSO4 increased serum and tissue iron by increasing hepcidin in LPS-induced iron deficiency. Desidustat increased erythroid population, especially iron-dependent polychromatic normoblasts and orthochromatic normoblasts, while FeSO4 did not improve cell architecture. PHD inhibition by desidustat improved iron utilization in iron deficiency anemia, by efficient erythropoiesis.


Assuntos
Anemia Ferropriva , Inibidores de Prolil-Hidrolase , Quinolonas , Insuficiência Renal Crônica , Camundongos , Animais , Anemia Ferropriva/tratamento farmacológico , Hepcidinas/metabolismo , Inibidores de Prolil-Hidrolase/farmacologia , Inibidores de Prolil-Hidrolase/uso terapêutico , Lipopolissacarídeos , Ferro/metabolismo , Inflamação/metabolismo , Hemoglobinas/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-35570856

RESUMO

Many anemic chronic kidney disease (CKD) patients are refractory to erythropoietin (EPO) effects due to inflammation, deranged iron utilization, and generation of EPO antibodies. This work assessed the effect of desidustat, an inhibitor of hypoxia inducible factor (HIF) prolyl hydroxylase (PHD), on EPO-refractory renal anemia. Sprague Dawley rats were made anemic by cisplatin (5 â€‹mg/kg, IP, single dose) and turpentine oil (5 â€‹mL/kg, SC, once a week). These rats were given recombinant human EPO (rhEPO, 1 â€‹µg/kg) and desidustat (15 or 30 â€‹mg/kg) for eight weeks. Separately, rhEPO (1-5 â€‹µg/kg) was given to anemic rats to sustain the normal hemoglobin levels and desidustat (15 â€‹mg/kg) for eight weeks. In another experiment, the anemic rats were treated rhEPO (5 â€‹µg/kg) for two weeks and then desidustat (15 â€‹mg/kg) for the next two weeks. Dosing of rhEPO was thrice a week, and for desidustat, it was on alternate days. Desidustat inhibited EPO-resistance caused by rhEPO treatment, decreased hepcidin, IL-6, IL-1ß, and increased iron and liver ferroportin. Desidustat reduced EPO requirement and anti-EPO antibodies. Desidustat also maintained normal hemoglobin levels after cessation of rhEPO treatment. Thus, novel prolyl hydroxylase inhibitor desidustat can treat EPO resistance via improved iron utilization and decreased inflammation.

3.
Eur J Pharmacol ; 899: 174032, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33753107

RESUMO

Diabetic retinopathy is a serious complication of diabetes, marked by retinal vascular damage, inflammation, and angiogenesis. This study's objective was to assess the potential benefits of saroglitazar, a peroxisome proliferator-activated receptor-alpha/gamma (PPAR-α/γ) agonist in diabetic retinopathy. Diabetic retinopathy was induced by streptozotocin in Sprague Dawley rats. The effect of saroglitazar was also assessed in the oxygen-induced retinopathy model in newborn rats and VEGF-induced angiogenesis in the chick chorioallantoic membrane (CAM) assay. Treatment of saroglitazar (1 and 4 mg/kg, oral) for 12 weeks significantly ameliorated retinal vascular leakage and leukostasis in the diabetic rats. Saroglitazar decreased oxidative stress, VEGF receptor signalling, NF-κBp65, and ICAM-1 in the retina of diabetic rats. The beneficial effects of saroglitazar (1 and 4 mg/kg, oral) were also observed on the neovascularization in oxygen-induced retinopathy in newborn rats. Saroglitazar also reduced VEGF-induced angiogenesis in CAM assay. This study reveals that saroglitazar has the potential to prevent the progression of retinopathy in diabetic patients.


Assuntos
Inibidores da Angiogênese/farmacologia , Retinopatia Diabética/tratamento farmacológico , PPAR alfa/agonistas , PPAR gama/agonistas , Fenilpropionatos/farmacologia , Pirróis/farmacologia , Retina/efeitos dos fármacos , Neovascularização Retiniana/tratamento farmacológico , Vasos Retinianos/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Embrião de Galinha , Diabetes Mellitus Experimental/induzido quimicamente , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Feminino , Hiperóxia/complicações , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/metabolismo , PPAR gama/metabolismo , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Retina/metabolismo , Retina/patologia , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Transdução de Sinais , Estreptozocina , Fator de Transcrição RelA/metabolismo
4.
Drug Dev Res ; 82(6): 852-860, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33480036

RESUMO

Chronic kidney disease (CKD) is associated with activated inflammatory responses. Desidustat, a prolyl hydroxylase (PHD) inhibitor is useful for treatment of anemia associated with CKD, but its effect on the inflammatory and fibrotic changes in CKD is not evaluated. In this study, we investigated the effect of desidustat on the inflammatory and fibrotic changes in preclinical models of acute and chronic kidney injury. Acute kidney injury was induced in male Sprague Dawley rats by ischemia-reperfusion, in which effect of desidustat (15 mg/kg, PO) was estimated. In a separate experiment, male C57 mice were treated with adenine for 14 days to induce CKD. These mice were treated with desidustat (15 mg/kg, PO, alternate day) treatment for 14 days, with adenine continued. Desidustat prevented elevation of serum creatinine, urea, IL-1ß, IL-6, and kidney injury molecule-1 (KIM-1), and elevated the erythropoietin levels in rats that were subjected to acute kidney injury. Mice treated with adenine developed CKD and anemia, and desidustat treatment caused improvement in serum creatinine, urea, and also improved hemoglobin and reduced hepatic and serum hepcidin. A significant reduction in IL-1ß, IL-6, myeloperoxidase (MPO) and oxidative stress was observed by desidustat treatment. Desidustat treatment also reduced renal fibrosis as observed by histological analysis and hydroxyproline content. Desidustat treatment reduced the renal fibrosis and inflammation along with a reduction in anemia in preclinical models of kidney injury, which may translate to protective effects in CKD patients.


Assuntos
Inibidores de Prolil-Hidrolase , Quinolonas , Traumatismo por Reperfusão , Animais , Citocinas/metabolismo , Rim , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Inibidores de Prolil-Hidrolase/farmacologia , Quinolonas/farmacologia , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia
5.
Curr Mol Pharmacol ; 12(2): 139-146, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30747091

RESUMO

BACKGROUND: Balanced coagonists of glucagon-like peptide-1 (GLP-1) and glucagon receptors are emerging therapies for the treatment of obesity and diabetes. Such coagonists also regulate lipid metabolism, independent of their body weight lowering effects. Many actions of the coagonists are partly mediated by fibroblast growth factor 21 (FGF21) signaling, with the major exception of bile homeostasis. Since thyroid hormone is an important regulator of bile homeostasis, we studied the involvement of thyroid hormone in coagonist-induced changes in lipid and bile metabolism. METHODS: We evaluated the effect of a single dose of coagonist Aib2 C24 chimera2 at 150 to 10000 µg/kg on tetraiodothyronine (T4) and triiodothyronine (T3) in high-fat diet-induced obese (DIO) mice and chow-fed mice. Repeated dose treatment of coagonist (150 µg/kg, subcutaneously) was assessed in four mice models namely, on lipid and bile homeostasis in DIO mice, propylthiouracil (PTU)-treated DIO mice, methimazole (MTM)-treated DIO mice and choline-deficient, L-amino acid-defined, highfat diet (CDAHFD)-induced nonalcoholic steatohepatitis (NASH). RESULTS: Single dose treatment of coagonist did not alter serum T3 and T4 in chow-fed mice and DIO mice. Coagonist treatment improved lipid metabolism and biliary cholesterol excretion. Chronic treatment of GLP-1 and glucagon coagonist did not alter serum T3 in hypothyroid DIO mice and CDAHFDinduced NASH. Coagonist increased serum T4 in DIO mice after 4 and 40 weeks of treatment, though no change in T4 levels was observed in hypothyroid mice or mice with NASH. CONCLUSION: Our data demonstrate that coagonist of GLP-1 and glucagon receptors does not modulate bile homeostasis via thyroid signaling.


Assuntos
Bile/metabolismo , Peptídeo 1 Semelhante ao Glucagon/agonistas , Receptores de Glucagon/agonistas , Tiroxina/sangue , Tri-Iodotironina/sangue , Animais , Dieta Hiperlipídica , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metimazol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/etiologia , Obesidade/metabolismo , Propiltiouracila/farmacologia , Receptores de Glucagon/metabolismo , Triglicerídeos/análise
6.
World J Diabetes ; 9(6): 80-91, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29988851

RESUMO

AIM: To investigate the role of glucagon-like peptide-1 (GLP-1)/glucagon receptors coagonist on renal dysfunction associated with diabetes and obesity. METHODS: Chronic high-fat diet fed C57BL/6J mice, streptozotocin-treated high-fat diet fed C57BL/6J mice and diabetic C57BLKS/J db/db mice were used as models of diabetes-induced renal dysfunction. The streptozotocin-treated high-fat diet fed mice and db/db mice were treated with the GLP-1 and glucagon receptors coagonist (Aib2 C24 Chimera2, 150 µg/kg, sc) for twelve weeks, while in chronic high-fat diet fed mice, coagonist (Aib2 C24 Chimera2, 150 µg/kg, sc) treatment was continued for forty weeks. Kidney function, histology, fibrosis, inflammation, and plasma biochemistry were assessed at the end of the treatment. RESULTS: Coagonist treatment decreased body weight, plasma lipids, insulin resistance, creatinine, blood urea nitrogen, urinary albumin excretion rate and renal lipids. In kidney, expression of lipogenic genes (SREBP-1C, FAS, and SCD-1) was decreased, and expression of genes involved in ß-oxidation (CPT-1 and PPAR-α) was increased due to coagonist treatment. In plasma, coagonist treatment increased adiponectin and FGF21 and decreased IL-6 and TNF-α. Coagonist treatment reduced expression of inflammatory (TNF-α, MCP-1, and MMP-9) and pro-fibrotic (TGF-ß, COL1A1, and α-SMA) genes and also improved histological derangement in renal tissue. CONCLUSION: Coagonist of GLP-1 and glucagon receptors alleviated diabetes and obesity-induced renal dysfunction by reducing glucose intolerance, obesity, and hyperlipidemia.

7.
J Ethnopharmacol ; 150(3): 946-52, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24432367

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In the traditional medicine, Cynodon dactylon (Linn.) is used in asthma, but scientific studies to provide evidence for medicinal uses are sparse. Thus this study was undertaken to provide evidence for medicinal use in asthma as a bronchodilator, and to identify active ingredient(s). MATERIALS AND METHODS: In vivo, acetylcholine (Ach)-induced bronchospasm was conducted in guinea pig while isolated rat tracheal strip was suspended in organ bath to measure the concentration response curve using multichannel data acquisition system. RESULTS: The chloroform extract of Cynodon dactylon (CECD) protected against Ach-induced bronchospasm in guinea pigs, similar to atropine. In the in vitro studies, CECD relaxed carbachol (CCh) and high K+-induced contraction of rat tracheal strip, similar to atropine and verapamil respectively, suggesting antimuscarinic and calcium channel blocking (CCB) activities, which were confirmed by right ward shifting of CCh and Ca(+2) concentration response curve (CRC). The phosphodiestrase (PDE) inhibitory activity was confirmed by potentiation of isoprenaline-induced inhibitory response, similar to papaverine. Densitometry analyses led to the identification of scopoletin as an active ingredient. Effectively, it significantly inhibited high K+, and Ca(+2) induced contractile response, similar to verapamil. The phosphodiestrase (PDE) inhibitory activity was confirmed by direct evidence of potentiation of isoprenaline-induced inhibitory response, similar to papaverine. CONCLUSIONS: These results suggest that the bronchodilator activity of CECD is partly due to presence of scopoletin, and mediated possibly through CCB and PDE inhibition.


Assuntos
Espasmo Brônquico/fisiopatologia , Broncodilatadores/farmacologia , Cynodon , Extratos Vegetais/farmacologia , Acetilcolina , Animais , Espasmo Brônquico/induzido quimicamente , Espasmo Brônquico/tratamento farmacológico , Broncodilatadores/uso terapêutico , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Carbacol/farmacologia , Feminino , Cobaias , Histamina , Técnicas In Vitro , Masculino , Antagonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/uso terapêutico , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico , Fitoterapia , Extratos Vegetais/uso terapêutico , Potássio/farmacologia , Ratos , Ratos Wistar , Traqueia/efeitos dos fármacos , Traqueia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...