Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2317444121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38527208

RESUMO

Dust loading in West and South Asia has been a major environmental issue due to its negative effects on air quality, food security, energy supply and public health, as well as on regional and global weather and climate. Yet a robust understanding of its recent changes and future projection remains unclear. On the basis of several high-quality remote sensing products, we detect a consistently decreasing trend of dust loading in West and South Asia over the last two decades. In contrast to previous studies emphasizing the role of local land use changes, here, we attribute the regional dust decline to the continuous intensification of Arctic amplification driven by anthropogenic global warming. Arctic amplification results in anomalous mid-latitude atmospheric circulation, particularly a deepened trough stretching from West Siberia to Northeast India, which inhibits both dust emissions and their downstream transports. Large ensemble climate model simulations further support the dominant role of greenhouse gases induced Arctic amplification in modulating dust loading over West and South Asia. Future projections under different emission scenarios imply potential adverse effects of carbon neutrality in leading to higher regional dust loading and thus highlight the importance of stronger anti-desertification counter-actions such as reforestation and irrigation management.

2.
Sci Total Environ ; 599-600: 165-180, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28475910

RESUMO

Long-term measurements of spectral aerosol optical depth (AOD) using sun/sky radiometer for a period of five years (2009-2014) from the remote island location at Kavaratti (KVT; 10.56°N, 72.64°E) in the southern Arabian sea have been analysed. Climatologically, AODs decrease from October to reach maximum of ~0.6 (at 500nm) in March, followed by a sudden fall towards May. Significant modulations of intra-seasonal timescales over this general pattern are noticed due to the changes in the relative strength of distinctively different sources. The corresponding changes in aerosol inversion parameters reveal the presence of coarse-mode aerosols during spring and fine-mode absorbing aerosols in autumn and winter months. An overall dominance of a mixed type of aerosols (~41%) with maximum in winter (~53%) was found via the AOD500 vs. Ångström exponent (α440-870) relationship, while biomass-burning aerosols or thick urban/industrial plumes contribute to ~19%. Spectral dependence of Ångström exponent and aerosol absorbing properties were used to identify the aerosol types and its modification processes. Based on air mass back trajectory analysis, we revealed that the advection of aerosols from Indian subcontinent and western regions plays a major role in modifying the optical properties of aerosols over the observational site. The shortwave aerosol direct radiative forcing estimated via SBDART model ranges from -11.00Wm-2 to -7.38Wm-2, -21.51Wm-2 to -14.33Wm-2 and 3.17Wm-2 and 10.0Wm-2 at top of atmosphere, surface and within the atmosphere, respectively. This atmospheric forcing translates into heating rate of 0.62-1.04Kday-1. Furthermore, the vertical profiles of aerosols and heating rate exhibit significant increase in lower (during winter and autumn) and mid troposphere (during spring). This may cause serious climate implications over Kavaratti with further consequences on cloud microphysics and monsoon rainfall.

3.
Sci Total Environ ; 575: 612-627, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27616711

RESUMO

Aerosol optical properties are analyzed for the first time over Desalpar (23.74°N, 70.69°E, 30m above mean sea level) a remote site in western India during October 2014 to August 2015. Spectral aerosol optical depth (AOD) measurements were performed using the CIMEL CE-318 automatic Sun/sky radiometer. The annual-averaged AOD500 and Ångström exponent (α440-870) values are found to be 0.43±0.26 and 0.69±0.39, respectively. On the seasonal basis, high AOD500 of 0.45±0.30 and 0.61±0.34 along with low α440-870 of 0.41±0.27 and 0.41±0.35 during spring (March-May) and summer (June-August), respectively, suggest the dominance of coarse-mode aerosols, while significant contribution from anthropogenic sources is observed in autumn (AOD500=0.47±0.26, α440-870=1.02±0.27). The volume size distribution and the spectral single-scattering albedo also confirm the presence of coarse-mode aerosols during March-August. An overall dominance of a mixed type of aerosols (~56%) mostly from October to February is found via the AOD500 vs α440-870 relationship, while marine aerosols contribute to ~18%. Spectral dependence of α and its second derivative (α') are also used for studying the aerosol modification processes. The average direct aerosol radiative forcing (DARF) computed via the SBDART model is estimated to range from -27.08Wm-2 to -10.74Wm-2 at the top of the atmosphere, from -52.21Wm-2 to -21.71Wm-2 at the surface and from 10.97Wm-2 to 26.54Wm-2 within the atmosphere. This atmospheric forcing translates into heating rates of 0.31-0.75Kday-1. The aerosol properties and DARF are also examined for different trajectory clusters in order to identify the sources and to assess the influence of long-range transported aerosols over Desalpar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...