Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomedicine (Lond) ; 17(25): 1929-1949, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36645007

RESUMO

Background: Studies on the anticancer effects of lanthanum strontium manganese oxide (LSMO) nanoparticles (NPs)-mediated hyperthermia at cellular and molecular levels are scarce. Materials & methods: LSMO NPs conjugated with folic acid (Fol-LSMO NPs) were synthesized, followed by doxorubicin-loading (DoxFol-LSMO NPs), and their effects on breast cancer cells were investigated. Results: Hyperthermia (45°C) and combination treatments exhibited the highest (∼95%) anticancer activity with increased oxidative stress. The involvement of intrinsic mitochondria-mediated apoptotic pathway and induction of autophagy was noted. Cellular and molecular evidence confirmed the crosstalk between apoptosis and autophagy, involving Beclin1, Bcl2 and Caspase-3 genes with free reactive oxygen species presence. Conclusion: The study confirmed hyperthermia and doxorubicin release by Fol-LSMO NPs induces apoptosis and autophagy in breast cancer cells.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Nanopartículas , Feminino , Humanos , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Lantânio/farmacologia , Manganês , Espécies Reativas de Oxigênio/metabolismo , Estrôncio , Ácido Fólico
2.
RSC Adv ; 11(49): 30532-30543, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35479870

RESUMO

Natural polymers provide a better alternative to synthetic polymers in the domain of drug delivery systems (DDSs) because of their renewability, biocompatibility, and low immunogenicity; therefore, they are being studied for the development of bulk/nanoformulations. Likewise, current methods for engineering natural polymers into micelles are in their infancy, and in-depth studies are required using natural polymers as controlled DDSs. Accordingly, in our present study, a new micellar DDS was synthesized using ethyl cellulose (EC) grafted with polyethylene glycol (PEG); it was characterized, its properties, cell toxicity, and hemocompatibility were evaluated, and its drug release kinetics were demonstrated using doxorubicin (DOX) as a model drug. Briefly, EC was grafted with PEG to form the amphiphilic copolymers EC-PEG1 and EC-PEG2 with varying PEG concentrations, and nano-micelles were prepared with and without the drug (DOX) via a dialysis method; the critical micelle concentrations (CMCs) were recorded to be 0.03 mg mL-1 and 0.00193 mg mL-1 for EC-PEG1 and EC-PEG2, respectively. The physicochemical properties of the respective nano-micelles were evaluated via various characterization techniques. The morphologies of the nano-micelles were analyzed via transmission electron microscopy (TEM), and the average size of the nano-micelles was recorded to be ∼80 nm. In vitro, drug release studies were done for 48 h, where 100% DOX release was recorded at pH 5.5 and 52% DOX release was recorded at pH 7.4 from the micelles. In addition, cytotoxicity studies suggested that DOX-loaded micelles were potent in killing MDA-MB-231 and MCF-7 cancer cells, and the blank micelles were non-toxic toward cancerous and normal cells. A cellular uptake study via fluorescence microscopy indicated the internalization of DOX-loaded micelles by cancer cells, delivering the DOX into the cellular compartments. Based on these studies, we concluded that the developed material should be studied further via in vivo studies to understand its potential as a controlled DDS to treat cancer.

3.
Mater Sci Eng C Mater Biol Appl ; 108: 110319, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923962

RESUMO

Zinc oxide nanoparticles have received much attention worldwide as they possess unique properties like varied morphology, large surface area to volume ratio, potent antibacterial activity, and biocompatibility. Biofilm contains homogenous or heterogeneous microorganisms that remain enclosed in a matrix of an extracellular polymeric substance on biotic or abiotic surfaces. Bacterial biofilm formed on medical devices such as central venous catheters, urinary catheters, prosthetic joints, cardiovascular implantable devices, dental implants, contact lenses, intrauterine contraceptive devices and breast implants cause persistent infections. Such biofilm-associated infections in medical implants cause serious problems for public health and affect the function of medical implants. So, there is an urgent need for the use of an antimicrobial agent that will inhibit biofilm, including such antibiotic-resistant bacterial strains as bacteria, to develop multiple drug-resistances resulting in failure of the antibiotic's action. The antimicrobial agent used should be ideal in terms of biocompatibility, antimicrobial activity, stability at different environmental conditions, with less sensitivity to the development of resistance towards micro-organisms, safe for in vivo and in vitro use, and remain non-hazardous to the environment, etc. The first objective of the review discusses the insights into the formation of biofilm on a medical device with the current strategies to inhibit. The second purpose is to review the recent progress in ZnO- based nanostructure including composites for antibacterial and anti-biofilm activities. This will offer a new opportunity for the application of Zinc oxide-based material in the prevention of biofilm on the medical devices.


Assuntos
Bactérias/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Nanopartículas/química , Próteses e Implantes/microbiologia , Óxido de Zinco/química , Antibacterianos/química , Infecções Bacterianas/prevenção & controle , Humanos
4.
ACS Omega ; 4(4): 6301-6310, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459770

RESUMO

Tramadol (Td) is a centrally acting opioid analgesic drug used for the treatment of moderate to severe pain. However, the half-life of Td is about 6-8 h, which is a major drawback. To increase the half-life of Td, it needs to be entrapped in a suitable substrate with the capability to release the drug for an extended period of time. Accordingly, in our studies, new protein blends in various compositions were prepared using hydrophilic (egg albumin) and hydrophobic (zein) proteins and fabricated them as nanoparticles with Td by the desolvation method. The prepared nanoparticles were characterized using analytical techniques. The morphology and diameter of the nanoparticles were determined by an environmental scanning electron microscope. The interactions between Td and proteins were confirmed by fluorescence spectroscopy, and the secondary structural changes were evaluated by circular dichroism. The hemolysis test and MTT assay indicated that the nanoparticles were nontoxic, and drug release studies showed an extended duration of release of Td for more than 48 h. The mechanism of the drug release followed the zero order. The overall studies inferred that these protein based nanoparticles have potential to release Td at a slow rate for an extended period of time. Further manipulation of the protein composition may regulate the duration of Td release for an effective therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...