Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(11): R524-R525, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38834021

RESUMO

Playing two-dimensional video games has been shown to result in improvements in a range of visual and cognitive tasks, and these improvements appear to generalize widely1,2,3,4,5,6. Here we report that young adults with healthy vision, surprisingly, showed a dramatic improvement in stereo vision after playing three-dimensional, but not two-dimensional, video games for a relatively short period of time. Intriguingly, neither group showed any significant improvement in binocular contrast sensitivity. This dissociation suggests that the visual enhancement was specific to genuine stereoscopic processing, not indirectly resulting from enhanced contrast processing, and required engaging in a disparity cue-rich three-dimensional environment.


Assuntos
Percepção de Profundidade , Jogos de Vídeo , Visão Binocular , Humanos , Adulto Jovem , Percepção de Profundidade/fisiologia , Visão Binocular/fisiologia , Masculino , Adulto , Feminino , Sensibilidades de Contraste/fisiologia
2.
Elife ; 122023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36734517

RESUMO

The locus coeruleus (LC) houses the vast majority of noradrenergic neurons in the brain and regulates many fundamental functions, including fight and flight response, attention control, and sleep/wake cycles. While efferent projections of the LC have been extensively investigated, little is known about its local circuit organization. Here, we performed large-scale multipatch recordings of noradrenergic neurons in adult mouse LC to profile their morpho-electric properties while simultaneously examining their interactions. LC noradrenergic neurons are diverse and could be classified into two major morpho-electric types. While fast excitatory synaptic transmission among LC noradrenergic neurons was not observed in our preparation, these mature LC neurons connected via gap junction at a rate similar to their early developmental stage and comparable to other brain regions. Most electrical connections form between dendrites and are restricted to narrowly spaced pairs or small clusters of neurons of the same type. In addition, more than two electrically coupled cell pairs were often identified across a cohort of neurons from individual multicell recording sets that followed a chain-like organizational pattern. The assembly of LC noradrenergic neurons thus follows a spatial and cell-type-specific wiring principle that may be imposed by a unique chain-like rule.


Assuntos
Neurônios Adrenérgicos , Locus Cerúleo , Camundongos , Animais , Locus Cerúleo/fisiologia , Neurônios Adrenérgicos/fisiologia , Transmissão Sináptica , Atenção
3.
Cell ; 185(18): 3408-3425.e29, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985322

RESUMO

Genetically encoded voltage indicators are emerging tools for monitoring voltage dynamics with cell-type specificity. However, current indicators enable a narrow range of applications due to poor performance under two-photon microscopy, a method of choice for deep-tissue recording. To improve indicators, we developed a multiparameter high-throughput platform to optimize voltage indicators for two-photon microscopy. Using this system, we identified JEDI-2P, an indicator that is faster, brighter, and more sensitive and photostable than its predecessors. We demonstrate that JEDI-2P can report light-evoked responses in axonal termini of Drosophila interneurons and the dendrites and somata of amacrine cells of isolated mouse retina. JEDI-2P can also optically record the voltage dynamics of individual cortical neurons in awake behaving mice for more than 30 min using both resonant-scanning and ULoVE random-access microscopy. Finally, ULoVE recording of JEDI-2P can robustly detect spikes at depths exceeding 400 µm and report voltage correlations in pairs of neurons.


Assuntos
Microscopia , Neurônios , Animais , Interneurônios , Camundongos , Microscopia/métodos , Neurônios/fisiologia , Fótons , Vigília
4.
Vision Res ; 194: 108012, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35042087

RESUMO

Crowding refers to the deleterious visual interaction among nearby objects. Does maximal crowding occur when objects are closest to one another in space and time? We examined how crowding depends on the spatial and temporal proximity, retinally and perceptually, between a target and flankers. Our target was a briefly flashed T-stimulus presented at 10° right of fixation (3-o'clock position). It appeared at different target-onset-to-flanker asynchronies with respect to the instant when a pair of flanking Ts, revolving around the fixation target, reached the 3-o'clock position. Observers judged the orientation of the target-T (the crowding task), or its position relative to the revolving flankers (the flash-lag task). Performance was also measured in the absence of flanker motion: target and flankers were either presented simultaneously (closest retinal temporal proximity) with different angular spatial offsets, or were presented collinearly (closest retinal spatial proximity) with different temporal onset asynchronies. We found that neither retinal nor perceptual spatial or temporal proximity could account for when maximal crowding occurred. Simulations using a model based on feed-forward interactions between sustained and transient channels in static and motion pathways, taking into account the differential response latencies, can explain the crowding functions observed under various spatio-temporal conditions between the target and flankers.


Assuntos
Aglomeração , Campos Visuais , Humanos , Movimento (Física) , Reconhecimento Visual de Modelos/fisiologia , Tempo de Reação , Retina
5.
Optom Vis Sci ; 99(12): 868-874, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36594754

RESUMO

SIGNIFICANCE: The suppression of blurred images in one eye by clear images in the other eye is thought to contribute to the success of monovision correction. We show that interocular suppression occurs also for low-contrast targets that are not blurred and, to a lesser extent, when clear and low-contrast targets are presented to the same eye. PURPOSE: A blurred target presented to one eye may be suppressed when a clear target is presented to the other eye. We sought to determine how this interocular suppression varies according to the separation between the blurred and clear targets and the magnitude of imposed blur. In addition, we examined whether a similar suppression occurs when the clear and blurred targets are imaged in the same eye. METHODS: Subjects (N = 4) viewed a clear 20/40 Sloan letter surrounded by four 2 × 10 min-arc flanking bars. In different blocks of trials, the gap between the letter and flanking bars varied from 0.5 to 4 bar widths. In addition, the flanking bars were either clear or spatially filtered to simulate 0.5 to 2 D of blur. The contrast required to detect the flanking bars was determined when the letter and flanking bars were presented either dichoptically or monoptically and compared with the thresholds for the bar targets presented alone. RESULTS: In both dichoptic and monoptic viewing conditions, detection thresholds for the blurred flanking bars are highest for the smallest spatial gap and decrease systematically as the gap increases. Thresholds are uniformly higher during dichoptic than monocular viewing, but the proportional change with the bar-to-letter separation is similar in both conditions. Surprisingly, the magnitude of imposed blur has very little influence on the magnitude of threshold elevation in either the dichoptic or monoptic viewing conditions. CONCLUSIONS: Because threshold elevation is nearly the same in the presence of 0 to 2 D of blur, we prefer to designate the phenomenon we studied as "contrast suppression." The similar spatial characteristics of suppression during dichoptic and monoptic viewing are consistent with contributions from a common neural mechanism.


Assuntos
Sensibilidades de Contraste , Visão Binocular , Humanos , Visão Monocular , Limiar Sensorial
6.
J Neurotrauma ; 37(24): 2664-2673, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32799741

RESUMO

Research suggests cumulative effects of repetitive head impacts (RHIs) on brain structure, especially with younger age of first exposure. Further, recent evidence suggests no immediate cognitive changes with increased RHIs but impairments across a sports season. The aim was to examine more closely the short-term time course of behavioral effects of exposure to RHI. Across 2 years, 18 female adolescent soccer players were tested on ProPoint (sensorimotor) and AntiPoint (cognitive) tasks with reaction time (RT) being the main outcome measure. The athletes were tested before and after workout with ball heading (immediate effect), as well as 24 h after workout (24 h effect) throughout two consecutive seasons. The number of headers performed 24 h before workout, during workout, and season average per workout were recorded. The athletes showed a decrease in ProPoint and AntiPoint RTs immediately after a workout, with no change or decrease in RTs with increasing RHIs. However, increasing RHIs during workout increased RTs in both tasks when tested 24 h later. The athletes also showed an increase in AntiPoint RTs with increasing season average RHIs. Our findings show a complex time course of effects of RHIs on sensorimotor and cognitive performance in adolescent athletes, with exposure to RHIs associated with no change or immediate benefits and then deficits by 24 h. Pathophysiological changes associated with exercise and traumatic brain injury can account for the sensorimotor and cognitive performance changes occurring within 24 h after RHIs.


Assuntos
Atletas , Traumatismos Cranianos Fechados/complicações , Traumatismos Cranianos Fechados/fisiopatologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Futebol/lesões , Adolescente , Feminino , Humanos
7.
BMJ Open Sport Exerc Med ; 6(1): e000684, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32341797

RESUMO

OBJECTIVE: To examine trends in number and seriousness of major injuries in the National Football League (NFL) over seasons 2010-2019 and the effect of rule changes to injuries to the leg, back, arm and head. METHODS: We calculated, from publicly available weekly injury reports, the number of players that were injured and playing time missed, that is, the number of weeks on average that an injured player had to sit out, as a function of injury to a specific body part. Using classical time series analysis techniques, we fitted injury data with linear and non-linear functions. RESULTS: The number of major injuries to the leg, back, arm and head has not declined over the last 10 years. During this time period, time missed because of injuries to the head has shown a significantly increasing trend. Rule changes designed specifically to protect arm or head have, respectively, succeeded in shortening the time that the injured player misses, but the impact lasts only over a single season. CONCLUSIONS: Overall, our data support the argument that new, well-intentioned rules adopted every season by the NFL have been proven to be too weak to make the NFL game safer. Broad-based management of brain and orthopaedic injuries and adoption of preventative measures to reduce the number of players injured and the seriousness of their injuries are required in the modern NFL.

8.
Hum Psychopharmacol ; 35(1): e2718, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31837056

RESUMO

OBJECTIVE: Schizophrenia patients show executive function (EF) impairments in voluntary orienting as measured by eye-movements. We tested 14 inpatients to investigate the effects of the antipsychotic olanzapine on EF, as measured by antisaccade eye-movement performance. METHODS: Patients were tested at baseline (before olanzapine), 3-5 days post-medication, and 12-14 days post-medication. Patients were also assessed on the Positive and Negative Syndrome Scale (PANSS) to measure the severity of schizophrenia-related symptoms, and administered the Stroop task, a test of EF. Nine matched controls were also tested on the antisaccade and Stroop. RESULTS: Both groups showed improvement on Stroop and antisaccade; however, the schizophrenia group improved significantly more on antisaccade, indicating an additional benefit of olanzapine on EF performance. Patients with poorer baseline antisaccade performance (High-Deficit) showed significantly greater improvement on the antisaccade task than patients with better baseline performance (Low-Deficit), suggesting that baseline EF impairment predicts the magnitude of cognitive improvement with olanzapine. These subgroups showed significant and equivalent improvement on PANSS scores, indicating that improvement on the antisaccade task with olanzapine was not a result of differences in magnitude of clinical improvement. CONCLUSIONS: This preliminary study provides evidence that olanzapine may be most advantageous for patients with greater baseline EF deficits.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Função Executiva/fisiologia , Movimentos Oculares/fisiologia , Olanzapina/uso terapêutico , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia , Adolescente , Adulto , Antipsicóticos/uso terapêutico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , Psicologia do Esquizofrênico , Teste de Stroop , Resultado do Tratamento , Adulto Jovem
9.
J Neurophysiol ; 120(5): 2430-2452, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30365390

RESUMO

When the brain has determined the position of a moving object, because of anatomical and processing delays the object will have already moved to a new location. Given the statistical regularities present in natural motion, the brain may have acquired compensatory mechanisms to minimize the mismatch between the perceived and real positions of moving objects. A well-known visual illusion-the flash lag effect-points toward such a possibility. Although many psychophysical models have been suggested to explain this illusion, their predictions have not been tested at the neural level, particularly in a species of animal known to perceive the illusion. To this end, we recorded neural responses to flashed and moving bars from primary visual cortex (V1) of awake, fixating macaque monkeys. We found that the response latency to moving bars of varying speed, motion direction, and luminance was shorter than that to flashes, in a manner that is consistent with psychophysical results. At the level of V1, our results support the differential latency model positing that flashed and moving bars have different latencies. As we found a neural correlate of the illusion in passively fixating monkeys, our results also suggest that judging the instantaneous position of the moving bar at the time of flash-as required by the postdiction/motion-biasing model-may not be necessary for observing a neural correlate of the illusion. Our results also suggest that the brain may have evolved mechanisms to process moving stimuli faster and closer to real time compared with briefly appearing stationary stimuli. NEW & NOTEWORTHY We report several observations in awake macaque V1 that provide support for the differential latency model of the flash lag illusion. We find that the equal latency of flash and moving stimuli as assumed by motion integration/postdiction models does not hold in V1. We show that in macaque V1, motion processing latency depends on stimulus luminance, speed and motion direction in a manner consistent with several psychophysical properties of the flash lag illusion.


Assuntos
Ilusões , Percepção de Movimento , Córtex Visual/fisiologia , Animais , Macaca mulatta , Masculino , Neurônios/fisiologia , Tempo de Reação , Córtex Visual/citologia , Vigília
10.
PLoS One ; 13(7): e0200450, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29975774

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0057364.].

11.
Front Psychol ; 9: 2519, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618945

RESUMO

Changes in prefrontal cortex are thought to be responsible for many of the characteristic behavioral changes that are seen during adolescence and late adulthood. Disruption of prefrontal cortex is an early sign for many developmental, neurological, and psychiatric disorders. Goal directed eye movements, such as Anti-saccades, have been shown to have high sensitivity as a gross assessment of prefrontal lobe function. Previous studies on the developmental changes of saccades across age have shown that stimulus-driven and goal-directed eye movements follow a U-shaped trend with peaks in performance occuring during adolescence. Using novel tablet-based pointing tasks, modeled on eye movement tests, this study aims to provide a preliminary understanding of how age affects manual pointing performance, in order to more easily track behavioral changes of the prefrontal cortex. In this study, 82 participants between the ages of 10 and 63 were recruited to participate. Results show that similarly to saccades, manual pointing responses are age dependent with fastest response times found during late adolescence to early adulthood (U-shaped curves). Importantly, we also demonstrated significant differences in the effect of age in stimulus-driven (Pro-point) and goal-directed (Anti-point) pointing tasks. The effect of age on response time (RT) is greater on Anti-point compared to Pro-point task (with a 79 ms greater mean decrease during early development and a 148 ms greater mean increase during later aging). Further, for Pro-point task, the U-shaped curve flattens at about 45 years whereas for Anti-point task the U-shaped curve continues up to the maximum age tested (about 60 years). This dissociation between age-related changes in sensorimotor and cognitive performance suggests independent development of associated brain circuity. Thus, changes of performance in disease that are specific for age and task may be able to help identify brain circuitry involved. Finally, given that these tablet-based pointing tasks show similar age-related patterns reported previously with eye-tracking technology, our findings suggest that such tablet-based tasks may provide an inexpensive, quick, and more practical way of detecting neurological deficits or tracking cognitive changes.

12.
Front Neurol ; 8: 261, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28676787

RESUMO

Current clinical diagnostic tools are limited in their ability to accurately differentiate idiopathic Parkinson's disease (PD) from multiple system atrophy (MSA) and other parkinsonian disorders early in the disease course, but eye movements may stand as objective and sensitive markers of disease differentiation and progression. To assess the use of eye movement performance for uniquely characterizing PD and MSA, subjects diagnosed with PD (N = 21), MSA (N = 11), and age-matched controls (C, N = 20) were tested on the prosaccade and antisaccade tasks using an infrared eye tracker. Twenty of these subjects were retested ~7 months later. Saccade latencies, error rates, and longitudinal changes in saccade latencies were measured. Both PD and MSA patients had greater antisaccade error rates than C subjects, but MSA patients exhibited longer prosaccade latencies than both PD and C patients. With repeated testing, antisaccade latencies improved over time, with benefits in C and PD but not MSA patients. In the prosaccade task, the normal latencies of the PD group show that basic sensorimotor oculomotor function remain intact in mid-stage PD, whereas the impaired latencies of the MSA group suggest additional degeneration earlier in the disease course. Changes in antisaccade latency appeared most sensitive to differences between MSA and PD across short time intervals. Therefore, in these mid-stage patients, increased antisaccade errors combined with slowed prosaccade latencies might serve as a useful marker for early differentiation between PD and MSA, and, antisaccade performance, a measure of MSA progression. Together, our findings suggest that eye movements are promising biomarkers for early differentiation and progression of parkinsonian disorders.

13.
J Neurotrauma ; 33(13): 1237-46, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26398492

RESUMO

This study examined the potential for novel tablet-based tasks, modeled after eye tracking techniques, to detect subtle sensorimotor and cognitive deficits after mild traumatic brain injury (mTBI). Specifically, we examined whether performance on these tablet-based tasks (Pro-point and Anti-point) was able to correctly categorize concussed versus non-concussed participants, compared with performance on other standardized tests for concussion. Patients admitted to the emergency department with mTBI were tested on the Pro-point and Anti-point tasks, a current standard cognitive screening test (i.e., the Standard Assessment of Concussion [SAC]), and another eye movement-based tablet test, the King-Devick(®) (KD). Within hours after injury, mTBI patients showed significant slowing in response times, compared with both orthopedic and age-matched control groups, in the Pro-point task, demonstrating deficits in sensorimotor function. Mild TBI patients also showed significant slowing, compared with both control groups, on the Anti-point task, even when controlling for sensorimotor slowing, indicating deficits in cognitive function. Performance on the SAC test revealed similar deficits of cognitive function in the mTBI group, compared with the age-matched control group; however, the KD test showed no evidence of cognitive slowing in mTBI patients, compared with either control group. Further, measuring the sensitivity and specificity of these tasks to accurately predict mTBI with receiver operating characteristic analysis indicated that the Anti-point and Pro-point tasks reached excellent levels of accuracy and fared better than current standardized tools for assessment of concussion. Our findings suggest that these rapid tablet-based tasks are able to reliably detect and measure functional impairment in cognitive and sensorimotor control within hours after mTBI. These tasks may provide a more sensitive diagnostic measure for functional deficits that could prove key to earlier detection of concussion, evaluation of interventions, or even prediction of persistent symptoms.


Assuntos
Concussão Encefálica/diagnóstico , Disfunção Cognitiva/diagnóstico , Movimentos Oculares/fisiologia , Testes Neuropsicológicos/normas , Desempenho Psicomotor/fisiologia , Adulto , Concussão Encefálica/complicações , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Computadores de Mão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Adulto Jovem
14.
Front Neurosci ; 9: 453, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26648841

RESUMO

Impairment in social interactions is a primary characteristic of people diagnosed with autism spectrum disorder (ASD). Although these individuals tend to orient less to naturalistic social cues than do typically developing (TD) individuals, laboratory experiments testing social orienting in ASD have been inconclusive, possibly because of a failure to fully isolate reflexive (stimulus-driven) and voluntary (goal-directed) social orienting processes. The purpose of the present study was to separately examine potential reflexive and/or voluntary social orienting differences in individuals with ASD relative to TD controls. Subjects (ages 7-14) with high-functioning ASD and a matched control group completed three gaze cueing tasks on an iPad in which individuals briefly saw a face with averted gaze followed by a target after a variable delay. Two tasks were 100% predictive with either all congruent (target appears in gaze direction) or all incongruent (target appears opposite from gaze direction) trials, respectively. Another task was non-predictive with these same trials (half congruent and half incongruent) intermixed randomly. Response times (RTs) to the target were used to calculate reflexive (incongruent condition RT-congruent condition RT) and voluntary (non-predictive condition RT-predictive condition RT) gaze cueing effects. Subjects also completed two additional non-social orienting tasks (ProPoint and AntiPoint). Subjects with ASD demonstrate intact reflexive but deficient voluntary gaze following. Similar results were found in a separate test of non-social orienting. This suggests problems with using social cues, but only in a goal-directed fashion, in our sample of high-functioning individuals with ASD. Such findings may not only explain inconclusive previous findings but more importantly be critical for understanding social dysfunctions in ASD and for developing future interventions.

15.
Sci Rep ; 5: 15604, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26493949

RESUMO

Many neurons in the dorsal and ventral visual stream have the property that after a brief visual stimulus presentation in their receptive field, the spiking activity in these neurons persists above their baseline levels for several seconds. This maintained activity is not always correlated with the monkey's task and its origin is unknown. We have previously proposed a simple neural network model, based on shape selective neurons in monkey lateral intraparietal cortex, which predicts the valence and time course of reflexive (bottom-up) spatial attention. In the same simple model, we demonstrate here that passive maintained activity or short-term memory of specific visual events can result without need for an external or top-down modulatory signal. Mutual inhibition and neuronal adaptation play distinct roles in reflexive attention and memory. This modest 4-cell model provides the first simple and unified physiologically plausible mechanism of reflexive spatial attention and passive short-term memory processes.


Assuntos
Atenção , Memória , Modelos Psicológicos , Humanos
16.
J Child Psychol Psychiatry ; 56(2): 193-202, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25040172

RESUMO

BACKGROUND: Reports conflict as to whether Tourette syndrome (TS) confers deficits in executive function. This study's aim was to evaluate executive function in youths with TS using oculomotor tasks while controlling for confounds of tic severity, age, medication, and severity of comorbid disorders. METHOD: Four saccade tasks requiring the executive functions of response generation, response inhibition, and working memory (prosaccade, antisaccade, 0-back, and 1-back) were administered. Twenty youths with TS and low tic severity (TS-low), nineteen with TS and moderate tic severity (TS-moderate), and 29 typically developing control subjects (Controls) completed the oculomotor tasks. RESULTS: There were small differences across groups in the prosaccade task. Controlling for any small sensorimotor differences, TS-moderate subjects had significantly higher error rates than Controls and TS-low subjects in the 0-back and 1-back tasks. In the 1-back task, these patients also took longer to respond than Controls or TS-low subjects. CONCLUSIONS: In a highly controlled design, the findings demonstrate for the first time that increased tic severity in TS is associated with impaired response inhibition and impaired working memory and that these executive function deficits cannot be accounted for by differences in age, medication or comorbid symptom severity.


Assuntos
Função Executiva/fisiologia , Inibição Psicológica , Memória de Curto Prazo/fisiologia , Movimentos Sacádicos/fisiologia , Tiques/fisiopatologia , Síndrome de Tourette/fisiopatologia , Adolescente , Criança , Comorbidade , Feminino , Humanos , Masculino , Índice de Gravidade de Doença
17.
PLoS One ; 8(2): e57364, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23460843

RESUMO

Does frequent head-to-ball contact cause cognitive dysfunctions and brain injury to soccer players? An iPad-based experiment was designed to examine the impact of ball-heading among high school female soccer players. We examined both direct, stimulus-driven, or reflexive point responses (Pro-Point) as well as indirect, goal-driven, or voluntary point responses (Anti-Point), thought to require cognitive functions in the frontal lobe. The results show that soccer players were significantly slower than controls in the Anti-Point task but displayed no difference in Pro-Point latencies, indicating a disruption specific to voluntary responses. These findings suggest that even subconcussive blows in soccer can result in cognitive function changes that are consistent with mild traumatic brain injury of the frontal lobes. There is great clinical and practical potential of a tablet-based application for quick detection and monitoring of cognitive dysfunction.


Assuntos
Transtornos Cognitivos/fisiopatologia , Minicomputadores , Jogos e Brinquedos , Futebol , Adolescente , Feminino , Cabeça , Humanos , Movimento , Tempo de Reação , Análise e Desempenho de Tarefas
18.
Vision Res ; 55: 32-40, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22239962

RESUMO

In a modified reflexive spatial attention paradigm, when the cue and the target are at the same spatial location, processing of the target is faster when the cue and the target have different shapes compared to same (shape effect). Recent physiological findings suggest distinct population level encoding of shape in ventral versus dorsal cortical visual streams in monkeys. In human observers, we tested whether the effect of shape on reflexive spatial attention could be attributed to ventral and/or dorsal stream encoding of shape. In the modified reflexive spatial attention paradigm, we varied the shapes of the cue and target. Based on data from monkey physiology (Lehky & Sereno, 2007), we selected four pairs of cue and target shapes. In some pairs, cue and target were similarly encoded (similar encoding distance) by a population of cells in the lateral intraparietal cortex, a dorsal stream area, but more dissimilarly encoded (having a greater encoding distance) by a population of cells in the anterior inferotemporal cortex (AIT), a ventral stream area. In other pairs, cue and target were similarly encoded in AIT and had greater dissimilarity in LIP encoding. We found that pairs of cue and target with greater dissimilarity in LIP encoding produced larger and more consistent shape effects up to a cue to target onset asynchrony (CTOA) of 450 ms. The shape effects for cue and target pairs with greater dissimilarity in AIT encoding were smaller and inconsistent, suggesting that shape effects in reflexive spatial attention are largely driven by the dorsal stream.


Assuntos
Percepção de Forma/fisiologia , Lobo Parietal/fisiologia , Percepção Espacial/fisiologia , Lobo Temporal/fisiologia , Vias Visuais/fisiologia , Atenção/fisiologia , Sinais (Psicologia) , Feminino , Humanos , Masculino , Neurônios/fisiologia , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Adulto Jovem
19.
Seeing Perceiving ; 25(5): 399-408, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21774871

RESUMO

PURPOSE: Persons who wear monovision correction typically receive a clear image in one eye and a blurred image in the other eye. Although monovision is known to elevate the minimum stereoscopic threshold (Dmin), it is uncertain how it influences the largest binocular disparity for which the direction of depth can reliably be perceived (Dmax). In this study, we compared Dmax for stereo when one eye's image is blurred to Dmax when both eyes' images are either clear or blurred. METHODS: The stimulus was a pair of vertically oriented, random-line patterns. To simulate monovision correction with +1.5 or +2.5 D defocus, the images of the line patterns presented to one eye were spatially low-pass filtered while the patterns presented to the other eye remained unfiltered. RESULTS: Compared to binocular viewing without blur, Dmin is elevated substantially more in the presence of monocular than binocular simulated blur. Dmax is reduced in the presence of simulated monocular blur by between 13 and 44%, compared to when the images in both eyes are clear. In contrast, when the targets presented to both eyes are blurred equally, Dmax either is unchanged or increases slightly, compared to the values measured with no blur. CONCLUSION: In conjunction with the elevation of Dmin, the reduction of Dmax with monocular blur indicates that the range of useful stereoscopic depth perception is likely to be compressed in patients who wear monovision corrections.


Assuntos
Sensibilidades de Contraste , Disparidade Visual/fisiologia , Visão Binocular/fisiologia , Visão Monocular/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
J Neurol Sci ; 313(1-2): 35-41, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22018763

RESUMO

BACKGROUND: Huntington disease (HD) is a genetic, neurodegenerative disorder characterized by chorea, behavioral co-morbidities, cognitive deficits, and eye movement abnormalities. We sought to evaluate whether reflexive and voluntary orienting prove useful as biomarkers of disease severity in HD. METHODS: Eleven HD subjects were evaluated with the motor subscale of the Unified Huntington Disease Rating Scale (UHDRS) and the Montreal Cognitive Assessment. Using an infrared eye tracker, we also measured latency and error rates of horizontal and vertical saccades using prosaccade and antisaccade eye movement tasks. We calculated simple and age-controlled correlations between eye movement and clinical parameters. RESULTS: Prosaccade latency correlated with total chorea score. HD patients with greater clinical severity were significantly slower in the prosaccade task. Antisaccade error rate also correlated with UHDRS motor score and total chorea score. HD patients with greater clinical severity as measured by either measure made significantly more errors in the antisaccade task. All these correlations remained significant even when age was taken into account. CONCLUSIONS: The results of the present age-controlled study show for the first time that both reflexive and voluntary eye motor control in HD patients decrease with increase in disease severity suggesting declines in both motor and cognitive function. Thus, relatively simple eye movement parameters (latency and error rate) obtained from simple tasks (prosaccade and antisaccade) may serve as quantitative biomarkers of sub-cortical and cortical disease severity in HD and could aid in predicting onset, distinguishing subtypes, or evaluating disease progression and novel therapies.


Assuntos
Piscadela/fisiologia , Progressão da Doença , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Movimentos Sacádicos/fisiologia , Índice de Gravidade de Doença , Adulto , Idoso , Biomarcadores , Movimentos Oculares/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...