Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38790307

RESUMO

BACKGROUND: Dyskinesias and freezing of gait are episodic disorders in Parkinson's disease, characterized by a fluctuating and unpredictable nature. This cross-sectional study aims to objectively monitor Parkinsonian patients experiencing dyskinesias and/or freezing of gait during activities of daily living and assess possible changes in spatiotemporal gait parameters. METHODS: Seventy-one patients with Parkinson's disease (40 with dyskinesias and 33 with freezing of gait) were continuously monitored at home for a minimum of 5 days using a single wearable sensor. Dedicated machine-learning algorithms were used to categorize patients based on the occurrence of dyskinesias and freezing of gait. Additionally, specific spatiotemporal gait parameters were compared among patients with and without dyskinesias and/or freezing of gait. RESULTS: The wearable sensor algorithms accurately classified patients with and without dyskinesias as well as those with and without freezing of gait based on the recorded dyskinesias and freezing of gait episodes. Standard spatiotemporal gait parameters did not differ significantly between patients with and without dyskinesias or freezing of gait. Both the time spent with dyskinesias and the number of freezing of gait episodes positively correlated with the disease severity and medication dosage. CONCLUSIONS: A single inertial wearable sensor shows promise in monitoring complex, episodic movement patterns, such as dyskinesias and freezing of gait, during daily activities. This approach may help implement targeted therapeutic and preventive strategies for Parkinson's disease.

2.
Sensors (Basel) ; 24(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38475089

RESUMO

We propose a new methodology for long-term biopotential recording based on an MEMS multisensor integrated platform featuring a commercial electrostatic charge-transfer sensor. This family of sensors was originally intended for presence tracking in the automotive industry, so the existing setup was engineered for the acquisition of electrocardiograms, electroencephalograms, electrooculograms, and electromyography, designing a dedicated front-end and writing proper firmware for the specific application. Systematic tests on controls and nocturnal acquisitions from patients in a domestic environment will be discussed in detail. The excellent results indicate that this technology can provide a low-power, unexplored solution to biopotential acquisition. The technological breakthrough is in that it enables adding this type of functionality to existing MEMS boards at near-zero additional power consumption. For these reasons, it opens up additional possibilities for wearable sensors and strengthens the role of MEMS technology in medical wearables for the long-term synchronous acquisition of a wide range of signals.


Assuntos
Sistemas Microeletromecânicos , Humanos , Tecnologia , Eletrocardiografia , Eletroencefalografia , Eletromiografia
3.
Front Neurol ; 14: 1169707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456655

RESUMO

Background: Stuttering is a childhood-onset neurodevelopmental disorder affecting speech fluency. The diagnosis and clinical management of stuttering is currently based on perceptual examination and clinical scales. Standardized techniques for acoustic analysis have prompted promising results for the objective assessment of dysfluency in people with stuttering (PWS). Objective: We assessed objectively and automatically voice in stuttering, through artificial intelligence (i.e., the support vector machine - SVM classifier). We also investigated the age-related changes affecting voice in stutterers, and verified the relevance of specific speech tasks for the objective and automatic assessment of stuttering. Methods: Fifty-three PWS (20 children, 33 younger adults) and 71 age-/gender-matched controls (31 children, 40 younger adults) were recruited. Clinical data were assessed through clinical scales. The voluntary and sustained emission of a vowel and two sentences were recorded through smartphones. Audio samples were analyzed using a dedicated machine-learning algorithm, the SVM to compare PWS and controls, both children and younger adults. The receiver operating characteristic (ROC) curves were calculated for a description of the accuracy, for all comparisons. The likelihood ratio (LR), was calculated for each PWS during all speech tasks, for clinical-instrumental correlations, by using an artificial neural network (ANN). Results: Acoustic analysis based on machine-learning algorithm objectively and automatically discriminated between the overall cohort of PWS and controls with high accuracy (88%). Also, physiologic ageing crucially influenced stuttering as demonstrated by the high accuracy (92%) of machine-learning analysis when classifying children and younger adults PWS. The diagnostic accuracies achieved by machine-learning analysis were comparable for each speech task. The significant clinical-instrumental correlations between LRs and clinical scales supported the biological plausibility of our findings. Conclusion: Acoustic analysis based on artificial intelligence (SVM) represents a reliable tool for the objective and automatic recognition of stuttering and its relationship with physiologic ageing. The accuracy of the automatic classification is high and independent of the speech task. Machine-learning analysis would help clinicians in the objective diagnosis and clinical management of stuttering. The digital collection of audio samples here achieved through smartphones would promote the future application of the technique in a telemedicine context (home environment).

4.
Brain ; 146(9): 3705-3718, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37018058

RESUMO

Although rigidity is a cardinal motor sign in patients with Parkinson's disease (PD), the instrumental measurement of this clinical phenomenon is largely lacking, and its pathophysiological underpinning remains still unclear. Further advances in the field would require innovative methodological approaches able to measure parkinsonian rigidity objectively, discriminate the different biomechanical sources of muscle tone (neural or visco-elastic components), and finally clarify the contribution to 'objective rigidity' exerted by neurophysiological responses, which have previously been associated with this clinical sign (i.e. the long-latency stretch-induced reflex). Twenty patients with PD (67.3 ± 6.9 years) and 25 age- and sex-matched controls (66.9 ± 7.4 years) were recruited. Rigidity was measured clinically and through a robotic device. Participants underwent robot-assisted wrist extensions at seven different angular velocities randomly applied, when ON therapy. For each value of angular velocity, several biomechanical (i.e. elastic, viscous and neural components) and neurophysiological measures (i.e. short and long-latency reflex and shortening reaction) were synchronously assessed and correlated with the clinical score of rigidity (i.e. Unified Parkinson's Disease Rating Scale-part III, subitems for the upper limb). The biomechanical investigation allowed us to measure 'objective rigidity' in PD and estimate the neuronal source of this phenomenon. In patients, 'objective rigidity' progressively increased along with the rise of angular velocities during robot-assisted wrist extensions. The neurophysiological examination disclosed increased long-latency reflexes, but not short-latency reflexes nor shortening reaction, in PD compared with control subjects. Long-latency reflexes progressively increased according to angular velocities only in patients with PD. Lastly, specific biomechanical and neurophysiological abnormalities correlated with the clinical score of rigidity. 'Objective rigidity' in PD correlates with velocity-dependent abnormal neuronal activity. The observations overall (i.e. the velocity-dependent feature of biomechanical and neurophysiological measures of objective rigidity) would point to a putative subcortical network responsible for 'objective rigidity' in PD, which requires further investigation.


Assuntos
Doença de Parkinson , Humanos , Rigidez Muscular/etiologia , Rigidez Muscular/diagnóstico , Rigidez Muscular/tratamento farmacológico , Reflexo de Estiramento/fisiologia , Reflexo Anormal , Eletromiografia
5.
Front Aging Neurosci ; 14: 889930, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601625

RESUMO

Background: Handwriting is an acquired complex cognitive and motor skill resulting from the activation of a widespread brain network. Handwriting therefore may provide biologically relevant information on health status. Also, handwriting can be collected easily in an ecological scenario, through safe, cheap, and largely available tools. Hence, objective handwriting analysis through artificial intelligence would represent an innovative strategy for telemedicine purposes in healthy subjects and people affected by neurological disorders. Materials and Methods: One-hundred and fifty-six healthy subjects (61 males; 49.6 ± 20.4 years) were enrolled and divided according to age into three subgroups: Younger adults (YA), middle-aged adults (MA), and older adults (OA). Participants performed an ecological handwriting task that was digitalized through smartphones. Data underwent the DBNet algorithm for measuring and comparing the average stroke sizes in the three groups. A convolutional neural network (CNN) was also used to classify handwriting samples. Lastly, receiver operating characteristic (ROC) curves and sensitivity, specificity, positive, negative predictive values (PPV, NPV), accuracy and area under the curve (AUC) were calculated to report the performance of the algorithm. Results: Stroke sizes were significantly smaller in OA than in MA and YA. The CNN classifier objectively discriminated YA vs. OA (sensitivity = 82%, specificity = 80%, PPV = 78%, NPV = 79%, accuracy = 77%, and AUC = 0.84), MA vs. OA (sensitivity = 84%, specificity = 56%, PPV = 78%, NPV = 73%, accuracy = 74%, and AUC = 0.7), and YA vs. MA (sensitivity = 75%, specificity = 82%, PPV = 79%, NPV = 83%, accuracy = 79%, and AUC = 0.83). Discussion: Handwriting progressively declines with human aging. The effect of physiological aging on handwriting abilities can be detected remotely and objectively by using machine learning algorithms.

6.
NPJ Parkinsons Dis ; 7(1): 82, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535672

RESUMO

Early noninvasive reliable biomarkers are among the major unmet needs in Parkinson's disease (PD) to monitor therapy response and disease progression. Objective measures of motor performances could allow phenotyping of subtle, undetectable, early stage motor impairments of PD patients. This work aims at identifying prognostic biomarkers in newly diagnosed PD patients and quantifying therapy-response. Forty de novo PD patients underwent clinical and technology-based kinematic assessments performing motor tasks (MDS-UPDRS part III) to assess tremor, bradykinesia, gait, and postural stability (T0). A visit after 6 months (T1) and a clinical and kinematic assessment after 12 months (T2) where scheduled. A clinical follow-up was provided between 30 and 36 months after the diagnosis (T3). We performed an ANOVA for repeated measures to compare patients' kinematic features at baseline and at T2 to assess therapy response. Pearson correlation test was run between baseline kinematic features and UPDRS III score variation between T0 and T3, to select candidate kinematic prognostic biomarkers. A multiple linear regression model was created to predict the long-term motor outcome using T0 kinematic measures. All motor tasks significantly improved after the dopamine replacement therapy. A significant correlation was found between UPDRS scores variation and some baseline bradykinesia (toe tapping amplitude decrement, p = 0.009) and gait features (velocity of arms and legs, sit-to-stand time, p = 0.007; p = 0.009; p = 0.01, respectively). A linear regression model including four baseline kinematic features could significantly predict the motor outcome (p = 0.000214). Technology-based objective measures represent possible early and reproducible therapy-response and prognostic biomarkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...