Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(23): 16589-16596, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814318

RESUMO

Isolated mixed-ligand complexes provide tractable model systems in which to study competitive and cooperative binding effects as well as controlled energy flow. Here, we report spectroscopic and isotopologue-selective infrared photofragmentation dynamics of mixed gas-phase Au(12/13CO)n(N2O)m+ complexes. The rich infrared action spectra, which are reproduced well using simulations of calculated lowest energy structures, clarify previous ambiguities in the assignment of vibrational bands, especially accidental coincidence of CO and N2O bands. The fragmentation dynamics exhibit the same unexpected behaviour as reported previously in which, once CO loss channels are energetically accessible, these dominate the fragmentation branching ratios, despite the much lower binding energy of N2O. We have investigated the dynamics computationally by considering anharmonic couplings between a relevant subset of normal modes involving both ligand stretch and intermolecular modes. Discrepancies between correlated and uncorrelated model fit to the ab initio potential energy curves are quantified using a Boltzmann sampled root mean squared deviation providing insight into efficiency of vibrational energy transfer between high frequency ligand stretches and the softer intermolecular modes which break during fragmentation.

2.
J Chem Phys ; 160(20)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38814011

RESUMO

Using the recently developed multistate mapping approach to surface hopping (multistate MASH) method combined with SA(3)-CASSCF(12,12)/aug-cc-pVDZ electronic structure calculations, the gas-phase isotropic ultrafast electron diffraction (UED) of cyclobutanone is predicted and analyzed. After excitation into the n-3s Rydberg state (S2), cyclobutanone can relax through two S2/S1 conical intersections, one characterized by compression of the CO bond and the other by dissociation of the α-CC bond. Subsequent transfer into the ground state (S0) is then achieved via two additional S1/S0 conical intersections that lead to three reaction pathways: α ring-opening, ethene/ketene production, and CO liberation. The isotropic gas-phase UED signal is predicted from the multistate MASH simulations, allowing for a direct comparison to the experimental data. This work, which is a contribution to the cyclobutanone prediction challenge, facilitates the identification of the main photoproducts in the UED signal and thereby emphasizes the importance of dynamics simulations for the interpretation of ultrafast experiments.

3.
Faraday Discuss ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757419

RESUMO

A crossed beam velocity-map ion-imaging apparatus has been used to determine differential cross sections (DCSs) for the rotationally inelastic scattering of NO(A2Σ+, v = 0, j = 0.5) with CO2, as a function of both NO(A, v = 0, N') final state and the coincident final rotational energy of the CO2. The DCSs are dominated by forward-peaked scattering for all N', with significant rotational excitation of CO2, and a small backward scattered peak is also observed for all final N'. However, no rotational rainbow scattering is observed and there is no evidence for significant product rotational angular momentum polarization. New ab initio potential energy surface calculations at the PNO-CCSD(T)-F12b level of theory report strong attractive forces at long ranges with significant anisotropy relative to both NO and CO2. The absence of rotational rainbow scattering is consistent with removal of low-impact-parameter collisions via electronic quenching, in agreement with the literature quenching rates of NO(A) by CO2 and recent electronic structure calculations. We propose that high-impact-parameter collisions, that do not lead to quenching, experience strong anisotropic attractive forces that lead to significant rotational excitation in both NO and CO2, depolarizing product angular momentum while leading to forward and backward glory scattering.

4.
Chem Commun (Camb) ; 60(6): 766, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38180159

RESUMO

Correction for 'Velocity map images from surface-hopping; reactive scattering of OH (2Σ+) + H2 (1Σ+g)' by Christopher Robertson and Martin J. Paterson, Chem. Commun., 2022, 58, 9092-9095, https://doi.org/10.1039/D2CC03368B.

5.
J Comput Chem ; 45(3): 150-158, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37698200

RESUMO

A pair of simulated left and right circularly polarized ultra-fast laser pulses of duration 20 femtoseconds that induce a mixture of excited states are applied to ethane. The response of the electron dynamics is investigated within the next generation quantum theory of atoms in molecules (NG-QTAIM) using third-generation eigenvector-trajectories which are introduced in this work. This enables an analysis of the mechanical and chiral properties of the electron dynamics of ethane without needing to subject the C-C bond to external torsions as was the case for second-generation eigenvector-trajectories. The mechanical properties, in particular, the bond-flexing and bond-torsion were found to increase depending on the plane of the applied laser pulses. The bond-flexing and bond-torsion, depending on the plane of polarization, increases or decreases after the laser pulses are switched off. This is explainable in terms of directionally-dependent effects of the long-lasting superpositions of excited states. The chiral properties correspond to the ethane molecule being classified as formally achiral consistent with previous NG-QTAIM investigations. Future planned investigations using ultra-fast circularly polarized lasers are briefly discussed.

6.
J Chem Theory Comput ; 19(24): 9161-9176, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38061390

RESUMO

A modular selected configuration interaction (SCI) code has been developed that is based on the existing Monte-Carlo configuration interaction code (MCCI). The modularity allows various selection protocols to be implemented with ease and allows for fair comparison between wave functions built via different criteria. We have initially implemented adaptations of existing SCI theories, which are based on either energy- or coefficient-driven selection schemes. These codes have been implemented not only in the basis of Slater determinants (SDs) but also in the basis of configuration state functions (CSFs) and extended to state-averaged regimes. This allows one to take advantage of the reduced dimensionality of the wave function in the CSF basis and also the guarantee of pure spin states. All SCI methods were found to be able to predict potential energy surfaces to high accuracy, producing compact wave functions, when compared to full configuration interaction (FCI) for a variety of bond-breaking potential energy surfaces. The compactness of the error-controlled adaptive configuration interaction approach, particularly in the CSF basis, was apparent with nonparallelity errors within chemical accuracy while containing as little as 0.02% of the FCI CSF space. The size-to-accuracy was also extended to FCI spaces approaching one billion configurations.

7.
J Chem Phys ; 159(12)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-38127380

RESUMO

Excited state van der Waals (vdW) potential energy surfaces (PESs) of the NO A2Σ+ + CO2X1Σg+ system are thoroughly investigated using coupled cluster theory and complete active space perturbation theory to second order (CASPT2). First, it is shown that pair natural orbital coupled cluster singles and doubles with perturbative triples yields comparable accuracy compared to CCSD(T) for molecular properties and vdW-minima at a fraction of computational cost of the latter. Using this method in conjunction with highly diffuse basis sets and counterpoise correction for basis set superposition error, the PESs for different intermolecular orientations are investigated. These show numerous vdW-wells, interconnected for all geometries except one, with a maximum depth of up to 830 cm-1; considerably deeper than those on the ground state surface. Multi-reference effects are investigated with CASPT2 calculations. The long-range vdW-surfaces support recent experimental observations relating to rotational energy transfer due the anisotropy in the potentials.

8.
Org Lett ; 25(37): 6907-6912, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37695021

RESUMO

1,2,6-Thiadiazines treated with visible light and 3O2 under ambient conditions are converted into difficult-to-access 1,2,5-thiadiazole 1-oxides (35 examples, yields of 39-100%). Experimental and theoretical studies reveal that 1,2,6-thiadiazines act as triplet photosensitizers that produce 1O2 and then undergo a chemoselective [3 + 2] cycloaddition to give an endoperoxide that ring contracts with selective carbon atom excision and complete atom economy. The reaction was optimized under both batch and continuous-flow conditions and is also efficient in green solvents.

9.
J Phys Chem A ; 127(30): 6251-6266, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37481777

RESUMO

A crossed molecular beam, velocity-map ion-imaging apparatus has been used to determine differential cross sections (DCSs), as a function of collider final internal energy, for rotationally inelastic scattering of NO(A2Σ+, v = 0, j = 0.5f1) with N2, CO, and O2, at average collision energies close to 800 cm-1. DCSs are strongly forward scattered for all three colliders for all observed NO(A) final rotational states, N'. For collisions with N2 and CO, the fraction of NO(A) that is scattered sideways and backward increases with increasing N', as does the internal rotational excitation of the colliders, with N2 having the highest internal excitation. In contrast, the DCSs for collisions with O2 are essentially only forward scattered, with little rotational excitation of the O2. The sideways and backward scattering expected from low-impact-parameter collisions, and the rotational excitation expected from the orientational dependence of published van der Waals potential energy surfaces (PESs), are absent in the observed NO(A) + O2 results. This is consistent with the removal of these short-range scattering trajectories via facile electronic quenching of NO(A) by O2, in agreement with the literature determination of the coupled NO-O2 PESs and the associated conical intersections. In contrast, collisions at high-impact parameter that predominately sample the attractive van der Waals minimum do not experience quenching and are inelastically forward scattered with low rotational excitation.

10.
J Phys Chem A ; 127(31): 6425-6436, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37494478

RESUMO

Excess energy redistribution dynamics operating in nitrobenzene under hexane and isopropanol solvation were investigated using ultrafast transient absorption spectroscopy (TAS) with a 267 nm pump and a 340-750 nm white light continuum probe. The use of a nonpolar hexane solvent provides a proxy to the gas-phase environment, and the findings are directly compared with a recent time-resolved photoelectron imaging (TRPEI) study on nitrobenzene using the same excitation wavelength [L. Saalbach et al., J. Phys. Chem. A 2021, 125, 7174-7184]. Of note is the observation of a 1/e lifetime of 3.5-6.7 ps in the TAS data that was absent in the TRPEI measurements. This is interpreted as a dynamical signature of the T2 state in nitrobenzene─analogous to observations in the related nitronaphthalene system, and additionally supported by previous quantum chemistry calculations. The discrepancy between the TAS and TRPEI measurements is discussed, with the overall findings providing an example of how different spectroscopic techniques can exhibit varying sensitivity to specific steps along the overall reaction coordinate connecting reactants to photoproducts.

11.
RSC Adv ; 13(9): 5826-5832, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36846398

RESUMO

Regioselective stepwise phenylation of 4,7-diarylbenzo[c][1,2,5]thiadiazole fluorophores has been achieved through a facile one-pot, three-step synthetic strategy involving sequential borylation, hydroxydechlorination and Suzuki-Miyaura cross-coupling reactions. Crucial to the selectivity was the use of BCl3 to regioselectively install a boronic acid group in the ortho-position of only one of the diaryl groups. The subsequent introduction of ortho-phenyl groups through Suzuki-Miyaura cross-coupling gave rise to twisted structures with hindered intramolecular rotation, providing a structural lever with which the fluorophore absorption and emission properties could be adjusted.

12.
Adv Mater ; 35(19): e2210363, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36787500

RESUMO

Hypoxia represents a remarkably exploitable target for cancer therapy, is encountered only in solid human tumors, and is highly associated with cancer resistance and recurrence. Here, a hypoxia-activated mitochondria-accumulated Ru(II) polypyridyl prodrug functionalized with conjugated azo (Az) and nitrogen mustard (NM) functionalities, RuAzNM, is reported. This prodrug has multimodal theranostic properties toward hypoxic cancer cells. Reduction of the azo group in hypoxic cell microenvironments gives rise to the generation of two primary amine products, a free aniline mustard, and the polypyridyl RuNH2 complex. Thus, the aniline mustard triggers generation of reactive oxygen species (ROS) and mtDNA crosslinking. Meanwhile, the resultant biologically benign phosphorescent RuNH2 gives rise to a diagnostic signal and signals activation of the phototherapy. This multimodal therapeutic effect eventually elevates ROS levels, depletes reduced nicotinamide adenine dinucleotide (NADH) and adenosine triphosphate (ATP), and induces mitochondrial membrane damage, mtDNA damage, and ultimately cell apoptosis. This unique strategy allows controlled multimodal theranostics to be realized in hypoxic cells and multicellular spheroids, making RuAzNM a highly selective and effective cancer-cell-selective theranostic agent (IC50  = 2.3 µm for hypoxic HepG2 cancer cells vs 58.2 µm for normoxic THL-3 normal cells). This is the first report of a metal-based compound developed as a multimodal theranostic agent for hypoxia.


Assuntos
Mostarda de Anilina , Antineoplásicos , Neoplasias , Pró-Fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Hipóxia/metabolismo , DNA Mitocondrial , Oxirredução , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico
13.
ACS Omega ; 7(49): 45057-45066, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530299

RESUMO

Suitability of single-reference density functional theory (DFT) methods for the calculation of redox potentials of copper-containing macrocycle complexes was confirmed by the use of T 1 diagnostics along with a verification of negligible spin contamination or wave function instability. When examining the effect of improvement in the cc-pVnZ basis set series on calculated redox potentials, the results readily converged at the cc-pVTZ level. The all-electron Def2-TZVPP basis set is shown to be a suitable choice of a basis set for the calculation of redox potentials when utilizing a cc-pVTZ geometry. The best-performing model chemistries are determined to be the M06/polarizable continuum model (PCM); therefore, a scheme for redox potential calculations of copper macrocycles using either M06/cc-pVTZ with PCM solvation is proposed to reliably reproduce experimental trends.

14.
Phys Chem Chem Phys ; 24(48): 29423-29436, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36453640

RESUMO

Time-resolved photoelectron imaging and supporting ab initio quantum chemistry calculations were used to investigate non-adiabatic excess energy redistribution dynamics operating in the saturated thioethers diethylsulfide, tetrahydrothiophene and thietane. In all cases, 200 nm excitation leads to molecular fragmentation on an ultrafast (<100 fs) timescale, driven by the evolution of Rydberg-to-valence orbital character along the S-C stretching coordinate. The C-S-C bending angle was also found to be a key coordinate driving initial internal conversion through the excited state Rydberg manifold, although only small angular displacements away from the ground state equilibrium geometry are required. Conformational constraints imposed by the cyclic ring structures of tetrahydrothiophene and thietane do not therefore influence dynamical timescales to any significant extent. Through use of a high-intensity 267 nm probe, we were also able to detect the presence of some transient (bi)radical species. These are extremely short lived, but they appear to confirm the presence of two competing excited state fragmentation channels - one proceeding directly from the initially prepared 4p manifold, and one involving non-adiabatic population of the 4s state. This is in addition to a decay pathway leading back to the S0 electronic ground state, which shows an enhanced propensity in the 5-membered ring system tetrahydrothiophene over the other two species investigated.

15.
J Chem Phys ; 157(16): 164304, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36319438

RESUMO

The quenching of NO A 2Σ+ with O2 as a collisional partner is important for combustion and atmospheric processes. There is still a lack of theoretical understanding of this event, especially concerning the nature of the different quenching pathways. In this work, we provide potential energy surfaces (PESs) of 20 electronic states of this system. We computed the spin-doublet and spin-quartet PESs using SA-CASSCF and XMS-CASPT2. We find two potential quenching pathways. The first one (Q1) is a two-step orientation-specific process. The system first undergoes an electron transfer (NO+ X 1Σ+ + O2 -X 2Πg) at short distances, before crossing to lower neutral states, such as NO X 2Π + O2a 1Δg, O2b 1Σg +, O2X 3Σg -, or even 2 O(3P). The second quenching pathway (Q2) is less orientation-dependent and should be sudden without requiring the proximity conditioning Q1. The Q2 cross section will be enhanced with increasing initial vibrational level in both O2 and NO. It is responsible for the production of NO X 2Π with higher O2 excited states, such as O2c 1Σu -, A'3Δu, or A 3Σu +. Overall, this work provides a first detailed theoretical investigation of the quenching of NO A 2Σ+ by O2X 3Σg - as well as introduces a weighting scheme generally applicable to multireference, open-shell bimolecular systems. The effect of spin-multiplicity on the different quenching pathways is also discussed.

16.
J Chem Theory Comput ; 18(11): 6690-6699, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36198067

RESUMO

We create an approach to efficiently calculate two-electron reduced density matrices (2-RDMs) using selected configuration interaction wavefunctions. This is demonstrated using the specific example of Monte Carlo configuration interaction (MCCI). The computation of the 2-RDMs is accelerated by using ideas from fast implementations of full configuration interaction (FCI) and recent advances in implementing the Slater-Condon rules using hardware bitwise operations. This method enables a comparison of MCCI and truncated CI 2-RDMs with FCI values for a range of molecules, which includes stretched bonds and excited states. The accuracy in energies, wavefunctions, and 2-RDMs is seen to exhibit a similar behavior. We find that MCCI can reach sufficient accuracy of the 2-RDM using significantly fewer configurations than truncated CI, particularly for systems with strong multireference character.

17.
Phys Chem Chem Phys ; 24(39): 24542-24552, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36193799

RESUMO

X-ray scattering cross sections are calculated using a range of increasingly correlated methods: Hartree-Fock (HF), complete active space self-consistent field (CASSCF), Monte Carlo configuration interaction (MCCI), and full configuration interaction (FCI). Even for the seemingly straightforward case of ground state Ne, the accuracy of the total scattering is significantly better with a more correlated wavefunction. Scanning the bond distance in ground state CO shows that the total scattering signal tracks the multireference character. We examine the convergence of the elastic, inelastic, and total scattering of O3. Overall, the inelastic and total components are found to be the most sensitive to the strength of correlation. Our results suggest that highly accurate measurement of X-ray scattering could provide a sensitive probe of pair-wise correlation between electrons.

18.
Chem Commun (Camb) ; 58(65): 9092-9095, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35894124

RESUMO

We study OH(Σ) + H2 → H2O(X) + H reactive scattering using two potential energy models found in the literature. We analyze the quenching channels and generate velocity map images (VMI) by simulating quantum-classical trajectories of the quenched products. The initial conditions attempt to simulate supersonic jet, molecular beam scattering experiments which we compare against. The simulated results are able to elucidate the mechanisms behind some of these experimental observations.

20.
Phys Chem Chem Phys ; 24(13): 7983-7993, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35311872

RESUMO

We characterize NO A2Σ+ + O2 X3Σg- van der Waals (vdW) Potential Energy Surface (PES) with RHF/RCCSD(T) and CASSCF/CASPT2 calculations. To do this, we first assess our computational setup to properly represent the individual molecular properties of O2 X3Σg-, NO X2Π, and NO A2Σ+. Specifically, we show that highly augmented basis sets are necessary to properly represent the NO A2Σ+ polarizability. Then, we optimize different vdW geometries, and provide BSSE corrected plots of the quartet vdW PES. The surfaces show a confined channel at a distance of approximately 6 Å with a depth of at least 20 cm-1 that we believe is caused by NO A2Σ+ hyper-polarizability. At shorter distances, the channel is connected to a vdW basin centered around the O-N O-O linear geometry with an inter-molecular separation of 4.3 Å, and a depth of 95 cm-1 at the RCCSD(T) level. A CASPT2 scan along the linear geometry show that this vdW basin exists on both the doublet and quartet excited surfaces. These results infer the existence of a collision complex between NO A2Σ+ and O2 X3Σg-, as predicted by earlier experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...