Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(2)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37428065

RESUMO

Tensor algebra operations such as contractions in computational chemistry consume a significant fraction of the computing time on large-scale computing platforms. The widespread use of tensor contractions between large multi-dimensional tensors in describing electronic structure theory has motivated the development of multiple tensor algebra frameworks targeting heterogeneous computing platforms. In this paper, we present Tensor Algebra for Many-body Methods (TAMM), a framework for productive and performance-portable development of scalable computational chemistry methods. TAMM decouples the specification of the computation from the execution of these operations on available high-performance computing systems. With this design choice, the scientific application developers (domain scientists) can focus on the algorithmic requirements using the tensor algebra interface provided by TAMM, whereas high-performance computing developers can direct their attention to various optimizations on the underlying constructs, such as efficient data distribution, optimized scheduling algorithms, and efficient use of intra-node resources (e.g., graphics processing units). The modular structure of TAMM allows it to support different hardware architectures and incorporate new algorithmic advances. We describe the TAMM framework and our approach to the sustainable development of scalable ground- and excited-state electronic structure methods. We present case studies highlighting the ease of use, including the performance and productivity gains compared to other frameworks.

2.
Urol Ann ; 15(1): 22-26, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006223

RESUMO

Introduction: Patients suffering from stricture urethra and deranged renal function have poor quality of life. The incidence of urethral stricture co-existing with renal failure is comparatively small and cause may be multifactorial. There is paucity of literature on management of urethral stricture associated with deranged renal function. We present our experience of managing stricture urethra associated with chronic renal failure. Materials and Methods: This was a retrospective study conducted from 2010 to 2019. Patients with stricture urethra and deranged renal function (serum creatinine >1.5 mg/dl) who underwent urethroplasty or perineal urethrostomy were included in our study. A total of 47 patients met the inclusion criteria and were included in this study. Patients were followed every 3 months in their 1st year of surgery and 6 monthly thereafter. Statistical analysis was done using SPSS version 16. Results: There was a significant increase in the mean postopérative maximum and average urinary flow rates when compared to the preoperative values. The overall success rate was 76.59%. Out of 47 patients, 10 had wound infection and delayed wound healing, 2 patients developed ventricular arrhythmias, 6 patients developed fluid and electrolyte imbalance, 2 patients developed seizures, and 1 patient developed septicemia in the postoperative period. Conclusion: Prevalence of patients with chronic renal failure associated with stricture urethra was 4.58% and features suggestive of deranged renal function at presentation were present in 1.81% patients. In the present study, complications related with chronic renal failure occurred in 17 (36.17%) patients. Multidisciplinary care of the patient along with appropriate surgical management is a viable option in this sub-group of patients.

3.
J Chem Theory Comput ; 19(8): 2248-2257, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37096369

RESUMO

We report the implementation of the real-time equation-of-motion coupled-cluster (RT-EOM-CC) cumulant Green's function method [ J. Chem. Phys. 2020, 152, 174113] within the Tensor Algebra for Many-body Methods (TAMM) infrastructure. TAMM is a massively parallel heterogeneous tensor library designed for utilizing forthcoming exascale computing resources. The two-body electron repulsion matrix elements are Cholesky-decomposed, and we imposed spin-explicit forms of the various operators when evaluating the tensor contractions. Unlike our previous real algebra Tensor Contraction Engine (TCE) implementation, the TAMM implementation supports fully complex algebra. The RT-EOM-CC singles (S) and doubles (D) time-dependent amplitudes are propagated using a first-order Adams-Moulton method. This new implementation shows excellent scalability tested up to 500 GPUs using the Zn-porphyrin molecule with 655 basis functions, with parallel efficiencies above 90% up to 400 GPUs. The TAMM RT-EOM-CCSD was used to study core photoemission spectra in the formaldehyde and ethyl trifluoroacetate (ESCA) molecules. Simulations of the latter involve as many as 71 occupied and 649 virtual orbitals. The relative quasiparticle ionization energies and overall spectral functions agree well with available experimental results.

4.
Front Chem ; 10: 982120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176891

RESUMO

We report the formulation of a new, cost-effective approximation method in the time-dependent optimized coupled-cluster (TD-OCC) framework [T. Sato et al., J. Chem. Phys. 148, 051101 (2018)] for first-principles simulations of multielectron dynamics in an intense laser field. The method, designated as TD-OCCD(T), is a time-dependent, orbital-optimized extension of the "gold-standard" CCSD(T) method in the ground-state electronic structure theory. The equations of motion for the orbital functions and the coupled-cluster amplitudes are derived based on the real-valued time-dependent variational principle using the fourth-order Lagrangian. The TD-OCCD(T) is size extensive and gauge invariant, and scales as O(N 7) with respect to the number of active orbitals N. The pilot application of the TD-OCCD(T) method to the strong-field ionization and high-order harmonic generation from a Kr atom is reported in comparison with the results of the previously developed methods, such as the time-dependent complete-active-space self-consistent field (TD-CASSCF), TD-OCC with double and triple excitations (TD-OCCDT), TD-OCC with double excitations (TD-OCCD), and the time-dependent Hartree-Fock (TDHF) methods.

5.
J Chem Phys ; 157(4): 044101, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35922363

RESUMO

Newly developed coupled-cluster (CC) methods enable simulations of ionization potentials and spectral functions of molecular systems in a wide range of energy scales ranging from core-binding to valence. This paper discusses the results obtained with the real-time equation-of-motion CC cumulant (RT-EOM-CC) approach and CC Green's function (CCGF) approaches in applications to the water and water dimer molecules. We compare the ionization potentials obtained with these methods for the valence region with the results obtained with the coupled-cluster with singles, doubles, and perturbative triples formulation as a difference of energies for N and N - 1 electron systems. All methods show good agreement with each other. They also agree well with the experiment with errors usually below 0.1 eV for the ionization potentials. We also analyze unique features of the spectral functions, associated with the position of satellite peaks, obtained with the RT-EOM-CC and CCGF methods employing single and double excitations, as a function of the monomer OH bond length and the proton transfer coordinate in the dimer. Finally, we analyze the impact of the basis set effects on the quality of calculated ionization potentials and find that the basis set effects are less pronounced for the augmented-type sets.

6.
J Chem Phys ; 154(23): 234104, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34241273

RESUMO

We present a cost-effective treatment of the triple excitation amplitudes in the time-dependent optimized coupled-cluster (TD-OCC) framework called TD-OCCDT(4) for studying intense laser-driven multielectron dynamics. It considers triple excitation amplitudes correct up to the fourth-order in many-body perturbation theory and achieves a computational scaling of O(N7), with N being the number of active orbital functions. This method is applied to the electron dynamics in Ne and Ar atoms exposed to an intense near-infrared laser pulse with various intensities. We benchmark our results against the TD complete-active-space self-consistent field (TD-CASSCF), TD-OCC with double and triple excitations (TD-OCCDT), TD-OCC with double excitations (TD-OCCD), and TD Hartree-Fock (TDHF) methods to understand how this approximate scheme performs in describing nonperturbatively nonlinear phenomena, such as field-induced ionization and high-harmonic generation. We find that the TD-OCCDT(4) method performs equally well as the TD-OCCDT method, almost perfectly reproducing the results of the fully correlated TD-CASSCF with a more favorable computational scaling.

7.
J Chem Phys ; 153(3): 034110, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32716201

RESUMO

We report successful implementation of the time-dependent second-order many-body perturbation theory using optimized orthonormal orbital functions called time-dependent optimized second-order many-body perturbation theory to reach out to relatively larger chemical systems for the study of intense-laser-driven multielectron dynamics. We apply this method to strong-field ionization and high-order harmonic generation of Ar. The calculation results are benchmarked against ab initio time-dependent complete-active-space self-consistent field, time-dependent optimized coupled-cluster double, and time-dependent Hartree-Fock methods, as well as a single active electron model to explore the role of electron correlation.

8.
Urol Case Rep ; 32: 101243, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32455118

RESUMO

Hypospadias is a rare birth deformity characterised by shortening of urethra with dorsal ectopia of the urethral meatus. The occurrence of hypospadias in female patients is extremely rare. We present a young female complaining of recurrent urinary tract infection and voiding difficulty caused by hypospadias.

9.
J Chem Phys ; 152(12): 124115, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32241130

RESUMO

We report the implementation of a cost-effective approximation method within the framework of the time-dependent optimized coupled-cluster (TD-OCC) method [T. Sato et al., J. Chem. Phys. 148, 051101 (2018)] for real-time simulations of intense laser-driven multielectron dynamics. The method, designated as TD-OCEPA0, is a time-dependent extension of the simplest version of the coupled-electron pair approximation with optimized orbitals [U. Bozkaya and C. D. Sherrill, J. Chem. Phys. 139, 054104 (2013)]. It is size extensive, gauge invariant, and computationally much more efficient than the TD-OCC method with double excitations. We employed this method to simulate the electron dynamics in Ne and Ar atoms exposed to intense near infrared laser pulses with various intensities. The computed results, including high-harmonic generation spectra and ionization yields, are compared with those of various other methods ranging from uncorrelated time-dependent Hartree-Fock to fully correlated (within the active orbital space) time-dependent complete-active-space self-consistent field (TD-CASSCF). The TD-OCEPA0 results show good agreement with TD-CASSCF ones for moderate laser intensities. For higher intensities, however, TD-OCEPA0 tends to overestimate the correlation effect, as occasionally observed for CEPA0 in the ground-state correlation energy calculations.

10.
J Chem Phys ; 152(10): 104302, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171231

RESUMO

This article deals with the extension of the relativistic double-ionization equation-of-motion coupled-cluster (DI-EOMCC) method [H. Pathak et al. Phys. Rev. A 90, 010501(R) (2014)] for the molecular systems. The Dirac-Coulomb Hamiltonian with four-component spinors is considered to take care of the relativistic effects. The implemented method is employed to compute a few low-lying doubly ionized states of noble gas atoms (Ar, Kr, Xe, and Rn) and Cl2, Br2, HBr, and HI. Additionally, we presented results with two intermediate schemes in the four-component relativistic DI-EOMCC framework to understand the role of electron correlation. The computed double ionization spectra for the atomic systems are compared with the values from the non-relativistic DI-EOMCC method with spin-orbit coupling [Z. Wang et al. J. Chem. Phys. 142, 144109 (2015)] and the values from the National Institute of Science and Technology (NIST) database. Our atomic results are found to be in good agreement with the NIST values. Furthermore, the obtained results for the molecular systems agree well with the available experimental values.

11.
J Chem Phys ; 148(5): 051101, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29421889

RESUMO

Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.

12.
J Chem Phys ; 145(7): 074110, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27544090

RESUMO

The open-shell reference relativistic equation-of-motion coupled-cluster method within its four-component description is successfully implemented with the consideration of single- and double- excitation approximations using the Dirac-Coulomb Hamiltonian. At the first attempt, the implemented method is employed to calculate ionization potential value of heavy atomic (Ag, Cs, Au, Fr, and Lr) and molecular (HgH and PbF) systems, where the effect of relativity does really matter to obtain highly accurate results. Not only the relativistic effect but also the effect of electron correlation is crucial in these heavy atomic and molecular systems. To justify the fact, we have taken two further approximations in the four-component relativistic equation-of-motion framework to quantify how the effect of electron correlation plays a role in the calculated values at different levels of theory. All these calculated results are compared with the available experimental data as well as with other theoretically calculated values to judge the extent of accuracy obtained in our calculations.

13.
J Chem Phys ; 144(12): 124307, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-27036448

RESUMO

The high effective electric field (Eeff) experienced by the unpaired electron in an atom or a molecule is one of the key ingredients in the success of electron electric dipole moment (eEDM) experiment and its precise calculation requires a very accurate theory. We, therefore, employed the Z-vector method in the relativistic coupled-cluster framework and found that HgH has a very large Eeff value (123.2 GV/cm) which makes it a potential candidate for the next generation eEDM experiment. Our study also reveals that it has a large scalar-pseudoscalar (S-PS) P,T-violating interaction constant, Ws = 284.2 kHz. To judge the accuracy of the obtained results, we have calculated parallel and perpendicular magnetic hyperfine structure (HFS) constants and compared with the available experimental values. The results of our calculation are found to be in nice agreement with the experimental values. Therefore, by looking at the HFS results, we can say that both Eeff and Ws values are also very accurate. Further, We have derived the relationship between these quantities and the ratio which will help to get model independent value of eEDM and S-PS interaction constant.

14.
J Chem Phys ; 143(8): 084119, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26328830

RESUMO

The effective electric field experienced by the unpaired electron in the ground state of PbF, which is a potential candidate in the search of electron electric dipole moment due to some special characteristics, is calculated using Z-vector method in the coupled cluster single- and double- excitation approximation with four component Dirac spinor. This is an important quantity to set the upper bound limit of the electron electric dipole moment. Further, we have calculated molecular dipole moment and parallel magnetic hyperfine structure constant (A‖) of (207)Pb in PbF to test the accuracy of the wavefunction obtained in the Z-vector method. The outcome of our calculations clearly suggests that the core electrons have significant contribution to the "atom in compound" properties.

15.
J Chem Theory Comput ; 10(5): 1923-33, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-26580522

RESUMO

We present an N(5) scaling modification to the standard EOMEA-CCSD method, based on the matrix partitioning technique and perturbative approximations. The method has lower computational scaling and smaller storage requirements than the standard EOMEA-CCSD method and, therefore, can be used to calculate electron affinities of large molecules and clusters. The performance and capabilities of the new method have been benchmarked with the standard EOMEA-CCSD method, for a test set of 20 small molecules, and the average absolute deviation is only 0.03 eV. The method is further used to investigate electron affinities of DNA and RNA nucleobases, and the results are in excellent agreement with the experimental values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...