Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(33): 13740-13749, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37577851

RESUMO

Graphitic carbon-based anodes for lithium-ion batteries have seen remarkable development and commercial acceptance during the past three decades. Still, the performance of these materials is limited due to the low surface area, stacking of layers, poor porosity, and meager conductivity. To overcome these limitations, we propose using polystyrene as a core and small-sized zeolitic imidazolate framework-67 (ZIF-67) particles as decorators to develop a highly porous three-dimensional graphitic carbon material. The developed material is optimized with the carbonization temperature for the best anodic performance of LIBs. The pyridinic nitrogen content in the material carbonized at 700 °C makes it high performing and more stable than the samples treated at 600, 800, and 900 °C. The packed coin cell exhibited an initial discharge capacity of 775 mA h g-1 at a current density of 50 mA g-1, which increases to 806 mA h g-1 after testing the material at different current densities for 55 cycles. The packed half-cell exhibited a highly stable performance of about 96% even after testing for 2000 cycles at 1 A g-1.

2.
ACS Appl Mater Interfaces ; 15(20): 24366-24376, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37186545

RESUMO

Aqueous zinc-ion batteries (ZIBs) provide a safer and cost-effective energy storage solution by utilizing nonflammable water-based electrolytes. Although many research efforts are focused on optimizing zinc anode materials, developing suitable cathode materials is still challenging. In this study, one-dimensional, mixed-phase MnO2 nanorods are synthesized using ionic liquid (IL). Here, the IL acts as a structure-directing agent that modifies MnO2 morphology and introduces mixed phases, as confirmed by morphological, structural, and X-ray photoelectron spectroscopy (XPS) studies. The MnO2 nanorods developed by this method are utilized as a cathode material for ZIB application in the coin-cell configuration. As expected, Zn//MnO2 nanorods show a significant increase in their capacity to 347 Wh kg-1 at 100 mA g-1, which is better than bare MnO2 nanowires (207.1 Wh kg-1) synthesized by the chemical precipitation method. The battery is highly rechargeable and maintains good retention of 86% of the initial capacity and 99% Coulombic efficiency after 800 cycles at 1000 mA g-1. The ex situ XPS, X-ray diffraction, and in-depth electrochemical analysis confirm that MnO6 octahedra experience insertion/extraction of Zn2+ with high reversibility. This study suggests the potential use of MnO2 nanorods to develop high-performance and durable battery electrode materials suitable for large-scale applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...