Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Biophys J ; 51(4-5): 335-352, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35576075

RESUMO

Amyloid crystals, a form of ordered protein aggregates documented relatively recently, have not been studied as extensively as amyloid fibres. This study investigates the formation of amyloid crystals with low frequency ultrasound (20 kHz) using ß-lactoglobulin, as a model protein for amyloid synthesis. Acoustic cavitation generates localised zones of intense shear, with extreme heat and pressure that could potentially drive the formation of amyloid structures at ambient bulk fluid temperatures (20 ± 1 °C). Thioflavin T fluorescence and electron microscopy showed that low-frequency ultrasound at 20 W/cm3 input power induced ß-stacking to produce amyloid crystals in the mesoscopic size range, with a mean length of approximately 22 µm. FTIR spectroscopy indicated a shift towards increased intermolecular antiparallel ß-sheet content. An increase in sonication time (0-60 min) and input power (4-24 W/cm3) increased the mean crystal length, but this increase was not linearly proportional to sonication time and input power due to the delayed onset of crystal growth. We propose that acoustic cavitation causes protein unfolding and aggregation and imparts energy to aggregates to cross the torsion barrier, to achieve their lowest energy state as amyloid crystals. The study contributes to a further understanding of protein chemistry relating to the energy landscape of folding and aggregation. Ultrasound presents opportunities for practical applications of amyloid structures, presenting a more adaptable and scalable approach for synthesis.


Assuntos
Amiloide , Lactoglobulinas , Amiloide/química , Lactoglobulinas/química , Agregados Proteicos , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Infect Dis Model ; 6: 244-257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33437896

RESUMO

This research paper aims at studying the impact of lockdown on the dynamics of novel Corona Virus Disease (COVID-19) emerged in Wuhan city of China in December 2019. Perceiving the pandemic situation throughout the world, Government of India restricted international passenger traffic through land check post (Liang, 2020) and imposed complete lockdown in the country on 24 March 2020. To study the impact of lockdown on disease dynamics we consider a three-dimensional mathematical model using nonlinear ordinary differential equations. The proposed model has been studied using stability theory of nonlinear ordinary differential equations. Basic reproduction ratio is computed and significant parameters responsible to keep basic reproduction ratio less than one are identified. The study reveals that disease vanishes from the system only if complete lockdown is imposed otherwise disease will always persist in the population. However, disease can be kept under control by implementing contact tracing and quarantine measures as well along with lockdown if lockdown is imposed partially.

3.
PeerJ ; 2: e578, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25289178

RESUMO

Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1), affect genes with different cellular functions, namely (2) lipoprotein metabolism, (3) membrane channels, (4) stress response, (5) response to oxidative stress, (6) muscle contraction and relaxation, and (7) vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and other vertebrate ectotherms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...